IAFPN:用于物体检测的层间增强和多层融合网络

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Vision and Applications Pub Date : 2024-07-08 DOI:10.1007/s00138-024-01577-5
Zhicheng Li, Chao Yang, Longyu Jiang
{"title":"IAFPN:用于物体检测的层间增强和多层融合网络","authors":"Zhicheng Li, Chao Yang, Longyu Jiang","doi":"10.1007/s00138-024-01577-5","DOIUrl":null,"url":null,"abstract":"<p>Feature pyramid network (FPN) improves object detection performance by means of top-down multilevel feature fusion. However, the current FPN-based methods have not effectively utilized the interlayer features to suppress the aliasing effects in the feature downward fusion process. We propose an interlayer attention feature pyramid network that attempts to integrate attention gates into FPN through interlayer enhancement to establish the correlation between context and model, thereby highlighting the salient region of each layer and suppressing the aliasing effects. Moreover, in order to avoid feature dilution in the feature downward fusion process and inability of multilayer features to utilize each other, simplified non-local algorithm is used in the multilayer fusion module to fuse and enhance the multiscale features. A comprehensive analysis of MS COCO and PASCAL VOC benchmarks demonstrate that our network achieves precise object localization and also outperforms current FPN-based object detection algorithms.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IAFPN: interlayer enhancement and multilayer fusion network for object detection\",\"authors\":\"Zhicheng Li, Chao Yang, Longyu Jiang\",\"doi\":\"10.1007/s00138-024-01577-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Feature pyramid network (FPN) improves object detection performance by means of top-down multilevel feature fusion. However, the current FPN-based methods have not effectively utilized the interlayer features to suppress the aliasing effects in the feature downward fusion process. We propose an interlayer attention feature pyramid network that attempts to integrate attention gates into FPN through interlayer enhancement to establish the correlation between context and model, thereby highlighting the salient region of each layer and suppressing the aliasing effects. Moreover, in order to avoid feature dilution in the feature downward fusion process and inability of multilayer features to utilize each other, simplified non-local algorithm is used in the multilayer fusion module to fuse and enhance the multiscale features. A comprehensive analysis of MS COCO and PASCAL VOC benchmarks demonstrate that our network achieves precise object localization and also outperforms current FPN-based object detection algorithms.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01577-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01577-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

特征金字塔网络(FPN)通过自上而下的多层次特征融合提高了物体检测性能。然而,目前基于 FPN 的方法并未有效利用层间特征来抑制特征向下融合过程中的混叠效应。我们提出了一种层间注意力特征金字塔网络,试图通过层间增强将注意力门集成到 FPN 中,建立上下文与模型之间的相关性,从而突出各层的突出区域,抑制混叠效应。此外,为了避免特征向下融合过程中的特征稀释和多层特征无法相互利用,在多层融合模块中采用了简化的非局部算法来融合和增强多尺度特征。对 MS COCO 和 PASCAL VOC 基准的综合分析表明,我们的网络实现了精确的目标定位,其性能也优于目前基于 FPN 的目标检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IAFPN: interlayer enhancement and multilayer fusion network for object detection

Feature pyramid network (FPN) improves object detection performance by means of top-down multilevel feature fusion. However, the current FPN-based methods have not effectively utilized the interlayer features to suppress the aliasing effects in the feature downward fusion process. We propose an interlayer attention feature pyramid network that attempts to integrate attention gates into FPN through interlayer enhancement to establish the correlation between context and model, thereby highlighting the salient region of each layer and suppressing the aliasing effects. Moreover, in order to avoid feature dilution in the feature downward fusion process and inability of multilayer features to utilize each other, simplified non-local algorithm is used in the multilayer fusion module to fuse and enhance the multiscale features. A comprehensive analysis of MS COCO and PASCAL VOC benchmarks demonstrate that our network achieves precise object localization and also outperforms current FPN-based object detection algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
期刊最新文献
A novel key point based ROI segmentation and image captioning using guidance information Specular Surface Detection with Deep Static Specular Flow and Highlight Removing cloud shadows from ground-based solar imagery Underwater image object detection based on multi-scale feature fusion Object Recognition Consistency in Regression for Active Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1