机器学习模型中用于特定克雷洛夫求解器预测的新矩阵特征选择策略

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Classification Pub Date : 2024-07-06 DOI:10.1007/s00357-024-09484-0
Hai-Bing Sun, Yan-Fei Jing, Xiao-Wen Xu
{"title":"机器学习模型中用于特定克雷洛夫求解器预测的新矩阵特征选择策略","authors":"Hai-Bing Sun, Yan-Fei Jing, Xiao-Wen Xu","doi":"10.1007/s00357-024-09484-0","DOIUrl":null,"url":null,"abstract":"<p>Numerical simulation processes in scientific and engineering applications require efficient solutions of large sparse linear systems, and variants of Krylov subspace solvers with various preconditioning techniques have been developed. However, it is time-consuming for practitioners with trial and error to find a high-performance Krylov solver in a candidate solver set for a given linear system. Therefore, it is instructive to select an efficient solver intelligently among a solver set rather than exploratory application of all solvers to solve the linear system. One promising direction of solver selection is to apply machine learning methods to construct a mapping from the matrix features to the candidate solvers. However, the computation of some matrix features is quite difficult. In this paper, we design a new selection strategy of matrix features to reduce computing cost, and then employ the selected features to construct a machine learning classifier to predict an appropriate solver for a given linear system. Numerical experiments on two attractive GMRES-type solvers for solving linear systems from the University of Florida Sparse Matrix Collection and Matrix Market verify the efficiency of our strategy, not only reducing the computing time for obtaining features and construction time of classifier but also keeping more than 90% prediction accuracy.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"30 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Matrix Feature Selection Strategy in Machine Learning Models for Certain Krylov Solver Prediction\",\"authors\":\"Hai-Bing Sun, Yan-Fei Jing, Xiao-Wen Xu\",\"doi\":\"10.1007/s00357-024-09484-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerical simulation processes in scientific and engineering applications require efficient solutions of large sparse linear systems, and variants of Krylov subspace solvers with various preconditioning techniques have been developed. However, it is time-consuming for practitioners with trial and error to find a high-performance Krylov solver in a candidate solver set for a given linear system. Therefore, it is instructive to select an efficient solver intelligently among a solver set rather than exploratory application of all solvers to solve the linear system. One promising direction of solver selection is to apply machine learning methods to construct a mapping from the matrix features to the candidate solvers. However, the computation of some matrix features is quite difficult. In this paper, we design a new selection strategy of matrix features to reduce computing cost, and then employ the selected features to construct a machine learning classifier to predict an appropriate solver for a given linear system. Numerical experiments on two attractive GMRES-type solvers for solving linear systems from the University of Florida Sparse Matrix Collection and Matrix Market verify the efficiency of our strategy, not only reducing the computing time for obtaining features and construction time of classifier but also keeping more than 90% prediction accuracy.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09484-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09484-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

科学和工程应用中的数值模拟过程需要对大型稀疏线性系统进行高效求解,采用各种预处理技术的克雷洛夫子空间求解器的变体也已开发出来。然而,对于从业人员来说,要在给定线性系统的候选求解器集中找到一个高性能的 Krylov 求解器,需要反复试验,耗费大量时间。因此,在求解器集中智能地选择一个高效求解器,而不是探索性地应用所有求解器来求解线性系统,是很有启发意义的。解算器选择的一个有前途的方向是应用机器学习方法,构建从矩阵特征到候选解算器的映射。然而,某些矩阵特征的计算相当困难。本文设计了一种新的矩阵特征选择策略,以降低计算成本,然后利用所选特征构建机器学习分类器,为给定线性系统预测合适的求解器。对佛罗里达大学稀疏矩阵集和矩阵市场中两种有吸引力的 GMRES 型线性系统求解器进行的数值实验验证了我们策略的高效性,不仅减少了获取特征的计算时间和构建分类器的时间,还保持了 90% 以上的预测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Matrix Feature Selection Strategy in Machine Learning Models for Certain Krylov Solver Prediction

Numerical simulation processes in scientific and engineering applications require efficient solutions of large sparse linear systems, and variants of Krylov subspace solvers with various preconditioning techniques have been developed. However, it is time-consuming for practitioners with trial and error to find a high-performance Krylov solver in a candidate solver set for a given linear system. Therefore, it is instructive to select an efficient solver intelligently among a solver set rather than exploratory application of all solvers to solve the linear system. One promising direction of solver selection is to apply machine learning methods to construct a mapping from the matrix features to the candidate solvers. However, the computation of some matrix features is quite difficult. In this paper, we design a new selection strategy of matrix features to reduce computing cost, and then employ the selected features to construct a machine learning classifier to predict an appropriate solver for a given linear system. Numerical experiments on two attractive GMRES-type solvers for solving linear systems from the University of Florida Sparse Matrix Collection and Matrix Market verify the efficiency of our strategy, not only reducing the computing time for obtaining features and construction time of classifier but also keeping more than 90% prediction accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
期刊最新文献
How to Measure the Researcher Impact with the Aid of its Impactable Area: A Concrete Approach Using Distance Geometry Multi-task Support Vector Machine Classifier with Generalized Huber Loss Clustering-Based Oversampling Algorithm for Multi-class Imbalance Learning Combining Semi-supervised Clustering and Classification Under a Generalized Framework Slope Stability Classification Model Based on Single-Valued Neutrosophic Matrix Energy and Its Application Under a Single-Valued Neutrosophic Matrix Scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1