{"title":"通过物理学启发的机器学习研究奇异扰动系统的慢速不变频域","authors":"Dimitrios Patsatzis, Gianluca Fabiani, Lucia Russo, Constantinos Siettos","doi":"10.1137/23m1602991","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C297-C322, August 2024. <br/> Abstract. We present a physics-informed machine learning (PIML) approach for the approximation of slow invariant manifolds of singularly perturbed systems, providing functionals in an explicit form that facilitates the construction and numerical integration of reduced-order models (ROMs). The proposed scheme solves the partial differential equation corresponding to the invariance equation (IE) within the geometric singular perturbation theory (GSPT) framework. For the solution of the IE, we used two neural network structures, namely, feedforward neural networks and random projection neural networks, with symbolic differentiation for the computation of the gradients required for the learning process. The efficiency of our PIML method is assessed via three benchmark problems, namely, the Michaelis–Menten, the target-mediated drug disposition reaction mechanism, and the 3D Sel’kov model. We show that the proposed PIML scheme provides approximations of equivalent or even higher accuracy than those provided by other traditional GSPT-based methods, and importantly, for any practical purposes, it is not affected by the magnitude of the perturbation parameter. This is of particular importance because there are many systems for which the gap between the fast and slow timescales is not that big, but still, ROMs can be constructed. A comparison of the computational costs between symbolic, automatic, and numerical approximation of the required derivatives in the learning process is also provided. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://epubs.siam.org/doi/suppl/10.1137/23M1602991/suppl_file/131735_1_supp_551502_s5k7wy_sc.pdf and https://epubs.siam.org/doi/suppl/10.1137/23M1602991/suppl_file/SISC_PIML_SIMs_SP-main.zip.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"20 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow Invariant Manifolds of Singularly Perturbed Systems via Physics-Informed Machine Learning\",\"authors\":\"Dimitrios Patsatzis, Gianluca Fabiani, Lucia Russo, Constantinos Siettos\",\"doi\":\"10.1137/23m1602991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C297-C322, August 2024. <br/> Abstract. We present a physics-informed machine learning (PIML) approach for the approximation of slow invariant manifolds of singularly perturbed systems, providing functionals in an explicit form that facilitates the construction and numerical integration of reduced-order models (ROMs). The proposed scheme solves the partial differential equation corresponding to the invariance equation (IE) within the geometric singular perturbation theory (GSPT) framework. For the solution of the IE, we used two neural network structures, namely, feedforward neural networks and random projection neural networks, with symbolic differentiation for the computation of the gradients required for the learning process. The efficiency of our PIML method is assessed via three benchmark problems, namely, the Michaelis–Menten, the target-mediated drug disposition reaction mechanism, and the 3D Sel’kov model. We show that the proposed PIML scheme provides approximations of equivalent or even higher accuracy than those provided by other traditional GSPT-based methods, and importantly, for any practical purposes, it is not affected by the magnitude of the perturbation parameter. This is of particular importance because there are many systems for which the gap between the fast and slow timescales is not that big, but still, ROMs can be constructed. A comparison of the computational costs between symbolic, automatic, and numerical approximation of the required derivatives in the learning process is also provided. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://epubs.siam.org/doi/suppl/10.1137/23M1602991/suppl_file/131735_1_supp_551502_s5k7wy_sc.pdf and https://epubs.siam.org/doi/suppl/10.1137/23M1602991/suppl_file/SISC_PIML_SIMs_SP-main.zip.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1602991\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1602991","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Slow Invariant Manifolds of Singularly Perturbed Systems via Physics-Informed Machine Learning
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C297-C322, August 2024. Abstract. We present a physics-informed machine learning (PIML) approach for the approximation of slow invariant manifolds of singularly perturbed systems, providing functionals in an explicit form that facilitates the construction and numerical integration of reduced-order models (ROMs). The proposed scheme solves the partial differential equation corresponding to the invariance equation (IE) within the geometric singular perturbation theory (GSPT) framework. For the solution of the IE, we used two neural network structures, namely, feedforward neural networks and random projection neural networks, with symbolic differentiation for the computation of the gradients required for the learning process. The efficiency of our PIML method is assessed via three benchmark problems, namely, the Michaelis–Menten, the target-mediated drug disposition reaction mechanism, and the 3D Sel’kov model. We show that the proposed PIML scheme provides approximations of equivalent or even higher accuracy than those provided by other traditional GSPT-based methods, and importantly, for any practical purposes, it is not affected by the magnitude of the perturbation parameter. This is of particular importance because there are many systems for which the gap between the fast and slow timescales is not that big, but still, ROMs can be constructed. A comparison of the computational costs between symbolic, automatic, and numerical approximation of the required derivatives in the learning process is also provided. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://epubs.siam.org/doi/suppl/10.1137/23M1602991/suppl_file/131735_1_supp_551502_s5k7wy_sc.pdf and https://epubs.siam.org/doi/suppl/10.1137/23M1602991/suppl_file/SISC_PIML_SIMs_SP-main.zip.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.