D. A. Morozov, G. A. Politova, M. A. Ganin, M. E. Politov, A. B. Mikhailova, A. V. Filimonov
{"title":"锑(Co,In)2 喇芙相的磁致性和磁致伸缩特性","authors":"D. A. Morozov, G. A. Politova, M. A. Ganin, M. E. Politov, A. B. Mikhailova, A. V. Filimonov","doi":"10.1134/s0031918x2460026x","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Multicomponent polycrystalline TbIn<sub><i>x</i></sub>Co<sub>2 – <i>x</i></sub> (with <i>х</i> = 0–0.2) solid solutions are prepared for the first time, and their crystal structure and magnetic, magnetocaloric, and magnetostrictive properties are studied. X-ray diffraction patterns taken at room temperature demonstrate mainly the presence of the cubic C15 Laves phase in all samples. As the indium content increases to <i>x</i> = 0.1, the lattice parameter is found to increase; the further increase in the indium content to <i>х</i> = 0.2 leads to a decrease in the lattice parameter. In this case, the Curie temperature <i>T</i><sub>C</sub> monotonically increases to 245 K. The isotheral magnetic entropy change Δ<i>S</i><sub>mag</sub> is calculated in accordance with magnetic measurements using the thermodynamic Maxwell’s relation. At a magnetic field change from 0 to 1.8 T, the maximum entropy change monotonically decreases and, for composition with <i>x</i> = 0.2, is 1.8 J/(kg К). As the indium content increases to <i>x</i> = 0.05, the volume magnetostriction increases. The further increase in the indium concentration leads to the decrease in the peak values and their shift to high temperatures.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"76 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetocaloric and Magnetostrictive Properties of the Tb(Co,In)2 Laves Phases\",\"authors\":\"D. A. Morozov, G. A. Politova, M. A. Ganin, M. E. Politov, A. B. Mikhailova, A. V. Filimonov\",\"doi\":\"10.1134/s0031918x2460026x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—Multicomponent polycrystalline TbIn<sub><i>x</i></sub>Co<sub>2 – <i>x</i></sub> (with <i>х</i> = 0–0.2) solid solutions are prepared for the first time, and their crystal structure and magnetic, magnetocaloric, and magnetostrictive properties are studied. X-ray diffraction patterns taken at room temperature demonstrate mainly the presence of the cubic C15 Laves phase in all samples. As the indium content increases to <i>x</i> = 0.1, the lattice parameter is found to increase; the further increase in the indium content to <i>х</i> = 0.2 leads to a decrease in the lattice parameter. In this case, the Curie temperature <i>T</i><sub>C</sub> monotonically increases to 245 K. The isotheral magnetic entropy change Δ<i>S</i><sub>mag</sub> is calculated in accordance with magnetic measurements using the thermodynamic Maxwell’s relation. At a magnetic field change from 0 to 1.8 T, the maximum entropy change monotonically decreases and, for composition with <i>x</i> = 0.2, is 1.8 J/(kg К). As the indium content increases to <i>x</i> = 0.05, the volume magnetostriction increases. The further increase in the indium concentration leads to the decrease in the peak values and their shift to high temperatures.</p>\",\"PeriodicalId\":20180,\"journal\":{\"name\":\"Physics of Metals and Metallography\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Metals and Metallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1134/s0031918x2460026x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x2460026x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
摘要-首次制备了多组分多晶 TbInxCo2 - x(х = 0-0.2)固溶体,并对其晶体结构和磁性、磁致性及磁致伸缩性能进行了研究。室温下拍摄的 X 射线衍射图样表明,所有样品中主要存在立方 C15 Laves 相。当铟含量增加到 x = 0.1 时,发现晶格参数增大;当铟含量进一步增加到 х = 0.2 时,晶格参数减小。在这种情况下,居里温度 TC 单调上升到 245 K。等温磁熵变化 ΔSmag 是根据磁性测量结果,利用热力学麦克斯韦关系计算得出的。当磁场变化从 0 到 1.8 T 时,最大熵变单调递减,对于 x = 0.2 的成分,最大熵变为 1.8 J/(kgК)。当铟含量增加到 x = 0.05 时,体积磁致伸缩增加。铟浓度的进一步增加导致峰值降低,并向高温转移。
Magnetocaloric and Magnetostrictive Properties of the Tb(Co,In)2 Laves Phases
Abstract—Multicomponent polycrystalline TbInxCo2 – x (with х = 0–0.2) solid solutions are prepared for the first time, and their crystal structure and magnetic, magnetocaloric, and magnetostrictive properties are studied. X-ray diffraction patterns taken at room temperature demonstrate mainly the presence of the cubic C15 Laves phase in all samples. As the indium content increases to x = 0.1, the lattice parameter is found to increase; the further increase in the indium content to х = 0.2 leads to a decrease in the lattice parameter. In this case, the Curie temperature TC monotonically increases to 245 K. The isotheral magnetic entropy change ΔSmag is calculated in accordance with magnetic measurements using the thermodynamic Maxwell’s relation. At a magnetic field change from 0 to 1.8 T, the maximum entropy change monotonically decreases and, for composition with x = 0.2, is 1.8 J/(kg К). As the indium content increases to x = 0.05, the volume magnetostriction increases. The further increase in the indium concentration leads to the decrease in the peak values and their shift to high temperatures.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.