{"title":"增强跨语言语音情感识别的层添加策略","authors":"Shreya G. Upadhyay, Carlos Busso, Chi-Chun Lee","doi":"arxiv-2407.04966","DOIUrl":null,"url":null,"abstract":"Cross-lingual speech emotion recognition (SER) is important for a wide range\nof everyday applications. While recent SER research relies heavily on large\npretrained models for emotion training, existing studies often concentrate\nsolely on the final transformer layer of these models. However, given the\ntask-specific nature and hierarchical architecture of these models, each\ntransformer layer encapsulates different levels of information. Leveraging this\nhierarchical structure, our study focuses on the information embedded across\ndifferent layers. Through an examination of layer feature similarity across\ndifferent languages, we propose a novel strategy called a layer-anchoring\nmechanism to facilitate emotion transfer in cross-lingual SER tasks. Our\napproach is evaluated using two distinct language affective corpora\n(MSP-Podcast and BIIC-Podcast), achieving a best UAR performance of 60.21% on\nthe BIIC-podcast corpus. The analysis uncovers interesting insights into the\nbehavior of popular pretrained models.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Layer-Anchoring Strategy for Enhancing Cross-Lingual Speech Emotion Recognition\",\"authors\":\"Shreya G. Upadhyay, Carlos Busso, Chi-Chun Lee\",\"doi\":\"arxiv-2407.04966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-lingual speech emotion recognition (SER) is important for a wide range\\nof everyday applications. While recent SER research relies heavily on large\\npretrained models for emotion training, existing studies often concentrate\\nsolely on the final transformer layer of these models. However, given the\\ntask-specific nature and hierarchical architecture of these models, each\\ntransformer layer encapsulates different levels of information. Leveraging this\\nhierarchical structure, our study focuses on the information embedded across\\ndifferent layers. Through an examination of layer feature similarity across\\ndifferent languages, we propose a novel strategy called a layer-anchoring\\nmechanism to facilitate emotion transfer in cross-lingual SER tasks. Our\\napproach is evaluated using two distinct language affective corpora\\n(MSP-Podcast and BIIC-Podcast), achieving a best UAR performance of 60.21% on\\nthe BIIC-podcast corpus. The analysis uncovers interesting insights into the\\nbehavior of popular pretrained models.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
跨语言语音情感识别(SER)对于广泛的日常应用非常重要。虽然最近的 SER 研究在很大程度上依赖于用于情感训练的大型预训练模型,但现有研究往往只关注这些模型的最终转换层。然而,鉴于这些模型的特定任务性质和分层架构,每个转换器层都封装了不同层次的信息。利用这种分层结构,我们的研究重点放在了不同层之间所蕴含的信息上。通过对不同语言层特征相似性的研究,我们提出了一种称为层锚定机制的新策略,以促进跨语言 SER 任务中的情感转移。我们使用两种不同的语言情感语料库(MSP-Podcast 和 BIIC-Podcast)对我们的方法进行了评估,在 BIIC-podcast 语料库中取得了 60.21% 的最佳 UAR 性能。分析揭示了流行的预训练模型行为的有趣之处。
A Layer-Anchoring Strategy for Enhancing Cross-Lingual Speech Emotion Recognition
Cross-lingual speech emotion recognition (SER) is important for a wide range
of everyday applications. While recent SER research relies heavily on large
pretrained models for emotion training, existing studies often concentrate
solely on the final transformer layer of these models. However, given the
task-specific nature and hierarchical architecture of these models, each
transformer layer encapsulates different levels of information. Leveraging this
hierarchical structure, our study focuses on the information embedded across
different layers. Through an examination of layer feature similarity across
different languages, we propose a novel strategy called a layer-anchoring
mechanism to facilitate emotion transfer in cross-lingual SER tasks. Our
approach is evaluated using two distinct language affective corpora
(MSP-Podcast and BIIC-Podcast), achieving a best UAR performance of 60.21% on
the BIIC-podcast corpus. The analysis uncovers interesting insights into the
behavior of popular pretrained models.