Md Raseduzzaman, Wenxu Dong, Gokul Gaudel, Stephen Okoth Aluoch, Arbindra Timilsina, Xiaoxin Li, Chunsheng Hu
{"title":"玉米-大豆间作减少了华北平原肥沃土壤的温室气体排放","authors":"Md Raseduzzaman, Wenxu Dong, Gokul Gaudel, Stephen Okoth Aluoch, Arbindra Timilsina, Xiaoxin Li, Chunsheng Hu","doi":"10.1007/s11368-024-03859-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aim</h3><p>Continuous monocropping with high nitrogen (N) fertilizer input substantially increases greenhouse gas (GHG) emissions in maize-based agroecosystems in the North China Plain (NCP). Introducing soybeans as an intercrop with maize and partially substituting urea with manure might effectively decrease GHG emissions. The aim of this study was to quantify the synergistic effect of maize-soybean intercropping and manure on soil GHG emissions.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A two-year field experiment with three cropping systems (maize monocrop, soybean monocrop, and maize-soybean intercrop) and four N treatments (control, urea, manure, and manure + urea) was carried out at Luancheng Agro-Ecosystem Experimental Station in the NCP. All N treatments, except the control, received 150 kg N ha<sup>−1</sup>season<sup>−1</sup>, either full dose as a basal application or two equal split applications.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Results showed that all treatments contributed as a net source of N<sub>2</sub>O and CO<sub>2</sub> fluxes but acted as a net sink of CH<sub>4</sub> fluxes. In both cropping seasons, intercrops had significantly lower N<sub>2</sub>O emissions compared to monocropping systems, with 38% and 14% less emissions than maize monocrops in 2018 and 2019, respectively. Additionally, maize monocrops had significantly higher soil CO<sub>2</sub> emissions than other systems, while maize-soybean intercropping had 12% and 13% less CO<sub>2</sub> emissions than maize monocrops in 2018 and 2019, respectively. Among fertilized treatments, manure-treated soils emit notably lower N<sub>2</sub>O fluxes compared to sole urea treatments. In this study, N<sub>2</sub>O and CO<sub>2</sub> fluxes had a strong positive correlation with soil mineral N concentrations, soil temperature, and moisture content. Possibly due to more efficient N utilization, intercrop soils exhibited significantly lower NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup> concentrations, leading to reduced nitrification and denitrification in the system, resulting in lower N<sub>2</sub>O emissions from maize-soybean intercrops.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our findings indicate that intercropping maize and soybean reduces soil NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>–</sup> concentrations, as well as significantly decreasing soil N<sub>2</sub>O and CO<sub>2</sub> emissions when compared to traditional maize monoculture. Therefore, due to its potential for reducing soil GHG emissions, maize-soybean intercropping can be regarded as an effective alternative cropping system to the prevailing maize-dominant monoculture to develop a sustainable agroecosystem in the NCP region.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize-soybean intercropping reduces greenhouse gas emissions from the fertilized soil in the North China Plain\",\"authors\":\"Md Raseduzzaman, Wenxu Dong, Gokul Gaudel, Stephen Okoth Aluoch, Arbindra Timilsina, Xiaoxin Li, Chunsheng Hu\",\"doi\":\"10.1007/s11368-024-03859-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and Aim</h3><p>Continuous monocropping with high nitrogen (N) fertilizer input substantially increases greenhouse gas (GHG) emissions in maize-based agroecosystems in the North China Plain (NCP). Introducing soybeans as an intercrop with maize and partially substituting urea with manure might effectively decrease GHG emissions. The aim of this study was to quantify the synergistic effect of maize-soybean intercropping and manure on soil GHG emissions.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>A two-year field experiment with three cropping systems (maize monocrop, soybean monocrop, and maize-soybean intercrop) and four N treatments (control, urea, manure, and manure + urea) was carried out at Luancheng Agro-Ecosystem Experimental Station in the NCP. All N treatments, except the control, received 150 kg N ha<sup>−1</sup>season<sup>−1</sup>, either full dose as a basal application or two equal split applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Results showed that all treatments contributed as a net source of N<sub>2</sub>O and CO<sub>2</sub> fluxes but acted as a net sink of CH<sub>4</sub> fluxes. In both cropping seasons, intercrops had significantly lower N<sub>2</sub>O emissions compared to monocropping systems, with 38% and 14% less emissions than maize monocrops in 2018 and 2019, respectively. Additionally, maize monocrops had significantly higher soil CO<sub>2</sub> emissions than other systems, while maize-soybean intercropping had 12% and 13% less CO<sub>2</sub> emissions than maize monocrops in 2018 and 2019, respectively. Among fertilized treatments, manure-treated soils emit notably lower N<sub>2</sub>O fluxes compared to sole urea treatments. In this study, N<sub>2</sub>O and CO<sub>2</sub> fluxes had a strong positive correlation with soil mineral N concentrations, soil temperature, and moisture content. Possibly due to more efficient N utilization, intercrop soils exhibited significantly lower NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup> concentrations, leading to reduced nitrification and denitrification in the system, resulting in lower N<sub>2</sub>O emissions from maize-soybean intercrops.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Our findings indicate that intercropping maize and soybean reduces soil NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>–</sup> concentrations, as well as significantly decreasing soil N<sub>2</sub>O and CO<sub>2</sub> emissions when compared to traditional maize monoculture. Therefore, due to its potential for reducing soil GHG emissions, maize-soybean intercropping can be regarded as an effective alternative cropping system to the prevailing maize-dominant monoculture to develop a sustainable agroecosystem in the NCP region.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03859-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03859-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
背景与目的在华北平原(NCP)以玉米为基础的农业生态系统中,高氮肥投入的连续单作大大增加了温室气体(GHG)的排放。引入大豆作为玉米间作作物,并用粪肥部分替代尿素,可有效减少温室气体排放。本研究旨在量化玉米-大豆间作和粪肥对土壤温室气体排放的协同效应。方法在华北平原栾城农业生态系统试验站进行了一项为期两年的田间试验,试验中采用了三种种植系统(玉米单作、大豆单作和玉米-大豆间作)和四种氮处理(对照、尿素、粪肥和粪肥+尿素)。结果表明,所有处理都是 N2O 和 CO2 通量的净源,但都是 CH4 通量的净汇。在两个种植季节,间作作物的一氧化二氮排放量都显著低于单作系统,2018 年和 2019 年分别比玉米单作系统少排放 38% 和 14%。此外,玉米单作的土壤二氧化碳排放量明显高于其他系统,而玉米-大豆间作在2018年和2019年的二氧化碳排放量分别比玉米单作少12%和13%。在施肥处理中,与单施尿素处理相比,粪肥处理土壤的 N2O 通量排放量明显较低。在这项研究中,N2O 和 CO2 通量与土壤矿物氮浓度、土壤温度和含水量有很强的正相关性。结论我们的研究结果表明,与传统的玉米单作相比,玉米和大豆间作可降低土壤中 NH4+ 和 NO3- 的浓度,并显著减少土壤中 N2O 和 CO2 的排放量。因此,由于玉米-大豆间作具有减少土壤温室气体排放的潜力,可被视为一种有效的替代种植系统,以取代目前以玉米为主的单一种植,从而在 NCP 地区发展可持续的农业生态系统。
Maize-soybean intercropping reduces greenhouse gas emissions from the fertilized soil in the North China Plain
Background and Aim
Continuous monocropping with high nitrogen (N) fertilizer input substantially increases greenhouse gas (GHG) emissions in maize-based agroecosystems in the North China Plain (NCP). Introducing soybeans as an intercrop with maize and partially substituting urea with manure might effectively decrease GHG emissions. The aim of this study was to quantify the synergistic effect of maize-soybean intercropping and manure on soil GHG emissions.
Methods
A two-year field experiment with three cropping systems (maize monocrop, soybean monocrop, and maize-soybean intercrop) and four N treatments (control, urea, manure, and manure + urea) was carried out at Luancheng Agro-Ecosystem Experimental Station in the NCP. All N treatments, except the control, received 150 kg N ha−1season−1, either full dose as a basal application or two equal split applications.
Results
Results showed that all treatments contributed as a net source of N2O and CO2 fluxes but acted as a net sink of CH4 fluxes. In both cropping seasons, intercrops had significantly lower N2O emissions compared to monocropping systems, with 38% and 14% less emissions than maize monocrops in 2018 and 2019, respectively. Additionally, maize monocrops had significantly higher soil CO2 emissions than other systems, while maize-soybean intercropping had 12% and 13% less CO2 emissions than maize monocrops in 2018 and 2019, respectively. Among fertilized treatments, manure-treated soils emit notably lower N2O fluxes compared to sole urea treatments. In this study, N2O and CO2 fluxes had a strong positive correlation with soil mineral N concentrations, soil temperature, and moisture content. Possibly due to more efficient N utilization, intercrop soils exhibited significantly lower NH4+ and NO3− concentrations, leading to reduced nitrification and denitrification in the system, resulting in lower N2O emissions from maize-soybean intercrops.
Conclusion
Our findings indicate that intercropping maize and soybean reduces soil NH4+ and NO3– concentrations, as well as significantly decreasing soil N2O and CO2 emissions when compared to traditional maize monoculture. Therefore, due to its potential for reducing soil GHG emissions, maize-soybean intercropping can be regarded as an effective alternative cropping system to the prevailing maize-dominant monoculture to develop a sustainable agroecosystem in the NCP region.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.