{"title":"联合特征引导线性变换器和 CNN 实现高效图像超分辨率","authors":"Bufan Wang, Yongjun Zhang, Wei Long, Zhongwei Cui","doi":"10.1007/s13042-024-02277-2","DOIUrl":null,"url":null,"abstract":"<p>Integrating convolutional neural networks (CNNs) and transformers has notably improved lightweight single image super-resolution (SISR) tasks. However, existing methods lack the capability to exploit multi-level contextual information, and transformer computations inherently add quadratic complexity. To address these issues, we propose a <b>J</b>oint features-<b>G</b>uided <b>L</b>inear <b>T</b>ransformer and CNN <b>N</b>etwork (JGLTN) for efficient SISR, which is constructed by cascading modules composed of CNN layers and linear transformer layers. Specifically, in the CNN layer, our approach employs an inter-scale feature integration module (IFIM) to extract critical latent information across scales. Then, in the linear transformer layer, we design a joint feature-guided linear attention (JGLA). It jointly considers adjacent and extended regional features, dynamically assigning weights to convolutional kernels for contextual feature selection. This process garners multi-level contextual information, which is used to guide linear attention for effective information interaction. Moreover, we redesign the method of computing feature similarity within the self-attention, reducing its computational complexity to linear. Extensive experiments shows that our proposal outperforms state-of-the-art models while balancing performance and computational costs.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"15 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint features-guided linear transformer and CNN for efficient image super-resolution\",\"authors\":\"Bufan Wang, Yongjun Zhang, Wei Long, Zhongwei Cui\",\"doi\":\"10.1007/s13042-024-02277-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating convolutional neural networks (CNNs) and transformers has notably improved lightweight single image super-resolution (SISR) tasks. However, existing methods lack the capability to exploit multi-level contextual information, and transformer computations inherently add quadratic complexity. To address these issues, we propose a <b>J</b>oint features-<b>G</b>uided <b>L</b>inear <b>T</b>ransformer and CNN <b>N</b>etwork (JGLTN) for efficient SISR, which is constructed by cascading modules composed of CNN layers and linear transformer layers. Specifically, in the CNN layer, our approach employs an inter-scale feature integration module (IFIM) to extract critical latent information across scales. Then, in the linear transformer layer, we design a joint feature-guided linear attention (JGLA). It jointly considers adjacent and extended regional features, dynamically assigning weights to convolutional kernels for contextual feature selection. This process garners multi-level contextual information, which is used to guide linear attention for effective information interaction. Moreover, we redesign the method of computing feature similarity within the self-attention, reducing its computational complexity to linear. Extensive experiments shows that our proposal outperforms state-of-the-art models while balancing performance and computational costs.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02277-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02277-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Joint features-guided linear transformer and CNN for efficient image super-resolution
Integrating convolutional neural networks (CNNs) and transformers has notably improved lightweight single image super-resolution (SISR) tasks. However, existing methods lack the capability to exploit multi-level contextual information, and transformer computations inherently add quadratic complexity. To address these issues, we propose a Joint features-Guided Linear Transformer and CNN Network (JGLTN) for efficient SISR, which is constructed by cascading modules composed of CNN layers and linear transformer layers. Specifically, in the CNN layer, our approach employs an inter-scale feature integration module (IFIM) to extract critical latent information across scales. Then, in the linear transformer layer, we design a joint feature-guided linear attention (JGLA). It jointly considers adjacent and extended regional features, dynamically assigning weights to convolutional kernels for contextual feature selection. This process garners multi-level contextual information, which is used to guide linear attention for effective information interaction. Moreover, we redesign the method of computing feature similarity within the self-attention, reducing its computational complexity to linear. Extensive experiments shows that our proposal outperforms state-of-the-art models while balancing performance and computational costs.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems