埃姆斯河口潮汐不对称描述符的敏感性

IF 2.2 3区 地球科学 Q2 OCEANOGRAPHY Ocean Dynamics Pub Date : 2024-07-10 DOI:10.1007/s10236-024-01622-x
Anna Wünsche, Marius Becker, Ralf Fritzsch, Jessica Kelln, Christian Winter
{"title":"埃姆斯河口潮汐不对称描述符的敏感性","authors":"Anna Wünsche, Marius Becker, Ralf Fritzsch, Jessica Kelln, Christian Winter","doi":"10.1007/s10236-024-01622-x","DOIUrl":null,"url":null,"abstract":"<p>Tidal asymmetry in estuaries and other tidally dominated coastal systems is commonly evaluated to assess system states or their development. Based on different methods, local states are classified as either flood or ebb dominant. An increasing number of descriptors for deriving tidal asymmetry in recent years calls for a comparison and discussion of their sensitivity on input data and its quality. We compared tidal asymmetry from water level and current velocity using various descriptors that deduce from harmonic, ratio, and skewness methods. Computed from one-year measurements at different stations along the Ems estuary, their comparability was enabled by a new approach of scaling. Our results on the variation of sampling intervals demonstrated a highly site-specific sensitivity of the descriptors that led up to changes in the asymmetry direction in tidal duration asymmetry and phase lag. The slack water asymmetry appeared most sensitive to the studied parameter settings. As expected, variability of tidal asymmetry reduced with an increasing number of analyzed tides. At the same time, uncertainty from the asymmetry during spring or neap phases compared to spring-neap periods remained in all analyzed descriptors. Hence, the characterization of the estuary in terms of flood- or ebb-dominance depends critically on the quality and extent of the input data. For all parameter settings, the impact of river discharge on tidal asymmetry was pronounced but varied depending on the location in the estuary. The actual characterization of the effect of asymmetry, e.g., on sediment transport, is not conducted in this study. We propose that this requires a more comprehensive dataset, such as depth and cross-sectional variability of currents and sediment concentrations.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The sensitivity of tidal asymmetry descriptors in the Ems estuary\",\"authors\":\"Anna Wünsche, Marius Becker, Ralf Fritzsch, Jessica Kelln, Christian Winter\",\"doi\":\"10.1007/s10236-024-01622-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tidal asymmetry in estuaries and other tidally dominated coastal systems is commonly evaluated to assess system states or their development. Based on different methods, local states are classified as either flood or ebb dominant. An increasing number of descriptors for deriving tidal asymmetry in recent years calls for a comparison and discussion of their sensitivity on input data and its quality. We compared tidal asymmetry from water level and current velocity using various descriptors that deduce from harmonic, ratio, and skewness methods. Computed from one-year measurements at different stations along the Ems estuary, their comparability was enabled by a new approach of scaling. Our results on the variation of sampling intervals demonstrated a highly site-specific sensitivity of the descriptors that led up to changes in the asymmetry direction in tidal duration asymmetry and phase lag. The slack water asymmetry appeared most sensitive to the studied parameter settings. As expected, variability of tidal asymmetry reduced with an increasing number of analyzed tides. At the same time, uncertainty from the asymmetry during spring or neap phases compared to spring-neap periods remained in all analyzed descriptors. Hence, the characterization of the estuary in terms of flood- or ebb-dominance depends critically on the quality and extent of the input data. For all parameter settings, the impact of river discharge on tidal asymmetry was pronounced but varied depending on the location in the estuary. The actual characterization of the effect of asymmetry, e.g., on sediment transport, is not conducted in this study. We propose that this requires a more comprehensive dataset, such as depth and cross-sectional variability of currents and sediment concentrations.</p>\",\"PeriodicalId\":19387,\"journal\":{\"name\":\"Ocean Dynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10236-024-01622-x\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10236-024-01622-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

河口和其他潮汐主导型沿岸系统的潮汐不对称性通常是用来评估系统状态或其发展的。根据不同的方法,局部状态可分为洪水主导型和退潮主导型。近年来,用于推导潮汐不对称性的描述指标越来越多,需要对这些指标对输入数据及其 质量的敏感性进行比较和讨论。我们利用谐波法、比值法和偏度法推导出的各种描述符,比较了从水位和流速得出的潮汐不对称性。这些描述符是根据埃姆斯河口沿岸不同站点的一年测量数据计算得出的,采用了一种新的缩放方法,使其具有可比性。我们对采样间隔变化的研究结果表明,描述因子对潮汐持续时间不对称和相位滞后的不对称方向变化具有高度的特定站点敏感性。松弛水域的不对称对所研究的参数设置最为敏感。正如预期的那样,潮汐不对称的可变性随着分析潮汐次数的增加而减小。同时,在所有分析的描述因子中,春季或新潮期与春季-新潮期的不对称仍存在不确定性。因此,以洪水或退潮为主来描述河口特征,关键取决于输入数据的质量和范围。在所有参数设置中,河流排放量对潮汐不对称的影响都很明显,但因河口位置不同而各异。本研究没有对不对称的影响进行实际描述,例如对泥沙输运的影响。我们建议,这需要更全面的数据集,如水流深度和横截面变化以及沉积物浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The sensitivity of tidal asymmetry descriptors in the Ems estuary

Tidal asymmetry in estuaries and other tidally dominated coastal systems is commonly evaluated to assess system states or their development. Based on different methods, local states are classified as either flood or ebb dominant. An increasing number of descriptors for deriving tidal asymmetry in recent years calls for a comparison and discussion of their sensitivity on input data and its quality. We compared tidal asymmetry from water level and current velocity using various descriptors that deduce from harmonic, ratio, and skewness methods. Computed from one-year measurements at different stations along the Ems estuary, their comparability was enabled by a new approach of scaling. Our results on the variation of sampling intervals demonstrated a highly site-specific sensitivity of the descriptors that led up to changes in the asymmetry direction in tidal duration asymmetry and phase lag. The slack water asymmetry appeared most sensitive to the studied parameter settings. As expected, variability of tidal asymmetry reduced with an increasing number of analyzed tides. At the same time, uncertainty from the asymmetry during spring or neap phases compared to spring-neap periods remained in all analyzed descriptors. Hence, the characterization of the estuary in terms of flood- or ebb-dominance depends critically on the quality and extent of the input data. For all parameter settings, the impact of river discharge on tidal asymmetry was pronounced but varied depending on the location in the estuary. The actual characterization of the effect of asymmetry, e.g., on sediment transport, is not conducted in this study. We propose that this requires a more comprehensive dataset, such as depth and cross-sectional variability of currents and sediment concentrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Dynamics
Ocean Dynamics 地学-海洋学
CiteScore
5.40
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Ocean Dynamics is an international journal that aims to publish high-quality peer-reviewed articles in the following areas of research: Theoretical oceanography (new theoretical concepts that further system understanding with a strong view to applicability for operational or monitoring purposes); Computational oceanography (all aspects of ocean modeling and data analysis); Observational oceanography (new techniques or systematic approaches in measuring oceanic variables, including all aspects of monitoring the state of the ocean); Articles with an interdisciplinary character that encompass research in the fields of biological, chemical and physical oceanography are especially encouraged.
期刊最新文献
A new high-resolution Coastal Ice-Ocean Prediction System for the East Coast of Canada Improvement of drag coefficient parameterization of WAVEWATCH-III using remotely sensed products during tropical cyclones Surface ocean conditions of the Arabian Sea using two different wind forcings in the regional ocean modelling system setup Assessment of tidal current potential in the Amapá’s inner continental shelf (Eastern Amazonia - Brazil) Aggregation and transport of microplastics by a cold-core ring in the southern recirculation of the Kuroshio Extension: the role of mesoscale eddies on plastic debris distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1