用于音源分离的语义分组网络

Shentong Mo, Yapeng Tian
{"title":"用于音源分离的语义分组网络","authors":"Shentong Mo, Yapeng Tian","doi":"arxiv-2407.03736","DOIUrl":null,"url":null,"abstract":"Recently, audio-visual separation approaches have taken advantage of the\nnatural synchronization between the two modalities to boost audio source\nseparation performance. They extracted high-level semantics from visual inputs\nas the guidance to help disentangle sound representation for individual\nsources. Can we directly learn to disentangle the individual semantics from the\nsound itself? The dilemma is that multiple sound sources are mixed together in\nthe original space. To tackle the difficulty, in this paper, we present a novel\nSemantic Grouping Network, termed as SGN, that can directly disentangle sound\nrepresentations and extract high-level semantic information for each source\nfrom input audio mixture. Specifically, SGN aggregates category-wise source\nfeatures through learnable class tokens of sounds. Then, the aggregated\nsemantic features can be used as the guidance to separate the corresponding\naudio sources from the mixture. We conducted extensive experiments on\nmusic-only and universal sound separation benchmarks: MUSIC, FUSS, MUSDB18, and\nVGG-Sound. The results demonstrate that our SGN significantly outperforms\nprevious audio-only methods and audio-visual models without utilizing\nadditional visual cues.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Grouping Network for Audio Source Separation\",\"authors\":\"Shentong Mo, Yapeng Tian\",\"doi\":\"arxiv-2407.03736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, audio-visual separation approaches have taken advantage of the\\nnatural synchronization between the two modalities to boost audio source\\nseparation performance. They extracted high-level semantics from visual inputs\\nas the guidance to help disentangle sound representation for individual\\nsources. Can we directly learn to disentangle the individual semantics from the\\nsound itself? The dilemma is that multiple sound sources are mixed together in\\nthe original space. To tackle the difficulty, in this paper, we present a novel\\nSemantic Grouping Network, termed as SGN, that can directly disentangle sound\\nrepresentations and extract high-level semantic information for each source\\nfrom input audio mixture. Specifically, SGN aggregates category-wise source\\nfeatures through learnable class tokens of sounds. Then, the aggregated\\nsemantic features can be used as the guidance to separate the corresponding\\naudio sources from the mixture. We conducted extensive experiments on\\nmusic-only and universal sound separation benchmarks: MUSIC, FUSS, MUSDB18, and\\nVGG-Sound. The results demonstrate that our SGN significantly outperforms\\nprevious audio-only methods and audio-visual models without utilizing\\nadditional visual cues.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,视听分离方法利用两种模态之间的自然同步来提高音源分离性能。他们从视觉输入中提取高级语义作为指导,以帮助分离个体声源的声音表征。我们能否直接学习从声音本身分离出单个语义呢?我们面临的难题是,多个声源在原始空间中混杂在一起。为了解决这个难题,我们在本文中提出了一种新颖的语义分组网络(Semantic Grouping Network,简称 SGN),它可以直接从输入的音频混合物中分离出声音表示并提取每个声源的高级语义信息。具体来说,SGN 通过可学习的声音类别标记来聚合类别化的声源特征。然后,聚合的语义特征可用作从混合物中分离相应音源的指导。我们在纯音乐和通用声音分离基准上进行了大量实验:这些基准包括:MUSIC、FUSS、MUSDB18 和 VGG-Sound。结果表明,在不使用额外视觉线索的情况下,我们的 SGN 明显优于以前的纯音频方法和视听模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Grouping Network for Audio Source Separation
Recently, audio-visual separation approaches have taken advantage of the natural synchronization between the two modalities to boost audio source separation performance. They extracted high-level semantics from visual inputs as the guidance to help disentangle sound representation for individual sources. Can we directly learn to disentangle the individual semantics from the sound itself? The dilemma is that multiple sound sources are mixed together in the original space. To tackle the difficulty, in this paper, we present a novel Semantic Grouping Network, termed as SGN, that can directly disentangle sound representations and extract high-level semantic information for each source from input audio mixture. Specifically, SGN aggregates category-wise source features through learnable class tokens of sounds. Then, the aggregated semantic features can be used as the guidance to separate the corresponding audio sources from the mixture. We conducted extensive experiments on music-only and universal sound separation benchmarks: MUSIC, FUSS, MUSDB18, and VGG-Sound. The results demonstrate that our SGN significantly outperforms previous audio-only methods and audio-visual models without utilizing additional visual cues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1