{"title":"在 Komagataella phaffii 中进行高效的 CRISPR 介导的 C 到 T 碱基编辑。","authors":"Ling-Yu Wu, Yan Xu, Xiao-Wei Yu","doi":"10.1002/biot.202400115","DOIUrl":null,"url":null,"abstract":"<p>The nonconventional methylotrophic yeast <i>Komagataella phaffii</i> is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for <i>K. phaffii</i> is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for <i>K. phaffii</i> based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (P<i><sub>AOX2*</sub></i>-KpA3A-nCas9-KpUGI-<i>DAS1</i>TT) comprised a truncated <i>AOX2</i> promoter (P<i><sub>AOX2*</sub></i>), a <i>K. phaffii</i> codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a <i>K. phaffii</i> codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in <i>K. phaffii</i>, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C<sub>-18</sub> to C<sub>-12</sub>. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%–60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%–93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in <i>K. phaffii</i>.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient CRISPR-mediated C-to-T base editing in Komagataella phaffii\",\"authors\":\"Ling-Yu Wu, Yan Xu, Xiao-Wei Yu\",\"doi\":\"10.1002/biot.202400115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nonconventional methylotrophic yeast <i>Komagataella phaffii</i> is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for <i>K. phaffii</i> is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for <i>K. phaffii</i> based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (P<i><sub>AOX2*</sub></i>-KpA3A-nCas9-KpUGI-<i>DAS1</i>TT) comprised a truncated <i>AOX2</i> promoter (P<i><sub>AOX2*</sub></i>), a <i>K. phaffii</i> codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a <i>K. phaffii</i> codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in <i>K. phaffii</i>, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C<sub>-18</sub> to C<sub>-12</sub>. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%–60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%–93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in <i>K. phaffii</i>.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400115\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400115","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
非常规养甲酵母 Komagataella phaffii 广泛应用于工业酶、药物蛋白和各种高价值化学品的生产。为 K. phaffii 开发稳健、多功能的基因组编辑工具对于设计日益先进的细胞工厂至关重要。在这里,我们首先开发了一种基于 CRISPR-nCas9 系统的 K. phaffii 碱基编辑方法。我们使用各种启动子和胞苷脱氨酶(CDA)设计了 24 种不同的碱基编辑器构建体。最佳碱基编辑器(PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT)由截短的AOX2启动子(PAOX2*)、K. phaffii密码子优化的人类APOBEC3A CDA(KpA3A)、人类密码子优化的nCas9(D10A)和K. phaffii密码子优化的尿嘧啶糖基化酶抑制剂(KpUGI)组成。这种最佳碱基编辑器能在 K. phaffii 中高效地进行 C 到 T 编辑,在从 C-18 到 C-12 的 7 个核苷酸窗口内,单病灶、双病灶和三病灶的编辑效率分别高达 96.0%、65.0% 和 5.0%。为了扩大可靶向的基因组区域,我们还用 nSpG 和 nSpRy 取代了最佳碱基编辑器中的 nCas9,结果发现,NGN-protospacer adjacent motif (PAM) 位点的 C-T 编辑效率分别为 50.0%-60.0% 和 NRN-PAM 位点的 C-T 编辑效率分别为 20.0%-93.2% 。因此,这些构建的碱基编辑器已成为 K. phaffii 基因功能研究、代谢工程、遗传改良和功能基因组学研究的有力工具。
Efficient CRISPR-mediated C-to-T base editing in Komagataella phaffii
The nonconventional methylotrophic yeast Komagataella phaffii is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for K. phaffii is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for K. phaffii based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT) comprised a truncated AOX2 promoter (PAOX2*), a K. phaffii codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a K. phaffii codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in K. phaffii, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C-18 to C-12. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%–60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%–93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in K. phaffii.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.