{"title":"球藻和硅藻的大量繁殖促进了沿海生态系统中不同的细菌群落和关联。","authors":"Dimitra-Ioli Skouroliakou, Elsa Breton, Urania Christaki","doi":"10.1111/1758-2229.13313","DOIUrl":null,"url":null,"abstract":"<p>Phytoplankton and bacteria form the foundation of marine food webs. While most studies on phytoplankton bloom influence on bacteria dynamics focus on diatom-dominated blooms due to their global ecological significance, it is unclear if similar patterns extend to other species that compete with diatoms like <i>Phaeocystis</i> spp. This study aimed to contribute to the understanding of associations between phytoplankton and bacteria in a temperate ecosystem. For this, we studied the dynamics of phytoplankton and bacteria, combining 16S metabarcoding, microscopy, and flow cytometry over 4 years (282 samples). Phytoplankton and bacterial communities were studied throughout the year, particularly during contrasting phytoplankton blooms dominated by the Haptophyte <i>Phaeocystis globosa</i> or diatoms. We applied extended local similarity analysis (eLSA) to construct networks during blooming and non-blooming periods. Overall, the importance of seasonal and species-specific interactions between phytoplankton and bacteria is highlighted. In winter, mixed diatom communities were interconnected with bacteria, indicating a synergistic degradation of diverse phytoplankton-derived substrates. In spring, despite the intensity variations of <i>P. globosa</i> blooms, the composition of bacterial communities remained consistent over several years, suggesting establishing a stable-state environment for bacterial communities. Specific associations between monospecific diatom blooms and bacteria were evidenced in summer.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13313","citationCount":"0","resultStr":"{\"title\":\"Phaeocystis globosa and diatom blooms promote distinct bacterial communities and associations in a coastal ecosystem\",\"authors\":\"Dimitra-Ioli Skouroliakou, Elsa Breton, Urania Christaki\",\"doi\":\"10.1111/1758-2229.13313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phytoplankton and bacteria form the foundation of marine food webs. While most studies on phytoplankton bloom influence on bacteria dynamics focus on diatom-dominated blooms due to their global ecological significance, it is unclear if similar patterns extend to other species that compete with diatoms like <i>Phaeocystis</i> spp. This study aimed to contribute to the understanding of associations between phytoplankton and bacteria in a temperate ecosystem. For this, we studied the dynamics of phytoplankton and bacteria, combining 16S metabarcoding, microscopy, and flow cytometry over 4 years (282 samples). Phytoplankton and bacterial communities were studied throughout the year, particularly during contrasting phytoplankton blooms dominated by the Haptophyte <i>Phaeocystis globosa</i> or diatoms. We applied extended local similarity analysis (eLSA) to construct networks during blooming and non-blooming periods. Overall, the importance of seasonal and species-specific interactions between phytoplankton and bacteria is highlighted. In winter, mixed diatom communities were interconnected with bacteria, indicating a synergistic degradation of diverse phytoplankton-derived substrates. In spring, despite the intensity variations of <i>P. globosa</i> blooms, the composition of bacterial communities remained consistent over several years, suggesting establishing a stable-state environment for bacterial communities. Specific associations between monospecific diatom blooms and bacteria were evidenced in summer.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13313\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13313\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13313","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Phaeocystis globosa and diatom blooms promote distinct bacterial communities and associations in a coastal ecosystem
Phytoplankton and bacteria form the foundation of marine food webs. While most studies on phytoplankton bloom influence on bacteria dynamics focus on diatom-dominated blooms due to their global ecological significance, it is unclear if similar patterns extend to other species that compete with diatoms like Phaeocystis spp. This study aimed to contribute to the understanding of associations between phytoplankton and bacteria in a temperate ecosystem. For this, we studied the dynamics of phytoplankton and bacteria, combining 16S metabarcoding, microscopy, and flow cytometry over 4 years (282 samples). Phytoplankton and bacterial communities were studied throughout the year, particularly during contrasting phytoplankton blooms dominated by the Haptophyte Phaeocystis globosa or diatoms. We applied extended local similarity analysis (eLSA) to construct networks during blooming and non-blooming periods. Overall, the importance of seasonal and species-specific interactions between phytoplankton and bacteria is highlighted. In winter, mixed diatom communities were interconnected with bacteria, indicating a synergistic degradation of diverse phytoplankton-derived substrates. In spring, despite the intensity variations of P. globosa blooms, the composition of bacterial communities remained consistent over several years, suggesting establishing a stable-state environment for bacterial communities. Specific associations between monospecific diatom blooms and bacteria were evidenced in summer.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.