高灵敏度质子酸掺杂聚吡咯分子印迹电化学传感器的机理及其在尿素检测中的应用。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2024-07-10 DOI:10.1016/j.talanta.2024.126514
Guangxing Hu , Shuang Cui , Hongda Wang , Yan Shi , Zhuang Li
{"title":"高灵敏度质子酸掺杂聚吡咯分子印迹电化学传感器的机理及其在尿素检测中的应用。","authors":"Guangxing Hu ,&nbsp;Shuang Cui ,&nbsp;Hongda Wang ,&nbsp;Yan Shi ,&nbsp;Zhuang Li","doi":"10.1016/j.talanta.2024.126514","DOIUrl":null,"url":null,"abstract":"<div><p>Molecularly imprinted electrochemical sensor is a kind of convenient, fast, and stable analyzer, but the conductivity of electrode materials and their affinity with the analyte affect its performance. A proton acid (PSS, SA, SSA) doping method was proposed to improve the electrochemical performance of the polypyrrole molecularly imprinted polymer (PPy-MIP), which promoted the electropolymerization of pyrrole, reduced the charge transfer resistance, and increased the electrochemical surface area. In terms of both improving conductivity and affinity, the response of the proton acids doped the polypyrrole molecularly imprinted electrochemical sensors (PPy-MIECS) to urea was improved by 25-fold (PSS), 5-fold (SA), and 3-fold (SSA) over that of PPy-MIECS. In addition, the PSS-PPy-MIECS was validated for the practical application with a linear detection range from 0.1 mM to 100 mM, high selectivity (α = 39.73), reusability (RSD% = 4.54 %), reproducibility (RSD% = 0.93 %), and stability (11 days). The advantage of proton acid doping method in PSS-PEDOT-MIECS to urea and PSS-PPy-MIECS to glucose extended its application in the performance enhancement of MIECS design.</p></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of high sensitivity proton acids doped polypyrrole molecularly imprinted electrochemical sensor and its application in urea detection\",\"authors\":\"Guangxing Hu ,&nbsp;Shuang Cui ,&nbsp;Hongda Wang ,&nbsp;Yan Shi ,&nbsp;Zhuang Li\",\"doi\":\"10.1016/j.talanta.2024.126514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecularly imprinted electrochemical sensor is a kind of convenient, fast, and stable analyzer, but the conductivity of electrode materials and their affinity with the analyte affect its performance. A proton acid (PSS, SA, SSA) doping method was proposed to improve the electrochemical performance of the polypyrrole molecularly imprinted polymer (PPy-MIP), which promoted the electropolymerization of pyrrole, reduced the charge transfer resistance, and increased the electrochemical surface area. In terms of both improving conductivity and affinity, the response of the proton acids doped the polypyrrole molecularly imprinted electrochemical sensors (PPy-MIECS) to urea was improved by 25-fold (PSS), 5-fold (SA), and 3-fold (SSA) over that of PPy-MIECS. In addition, the PSS-PPy-MIECS was validated for the practical application with a linear detection range from 0.1 mM to 100 mM, high selectivity (α = 39.73), reusability (RSD% = 4.54 %), reproducibility (RSD% = 0.93 %), and stability (11 days). The advantage of proton acid doping method in PSS-PEDOT-MIECS to urea and PSS-PPy-MIECS to glucose extended its application in the performance enhancement of MIECS design.</p></div>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039914024008932\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914024008932","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

分子印迹电化学传感器是一种方便、快速、稳定的分析仪器,但电极材料的电导率及其与被分析物的亲和性会影响其性能。为改善聚吡咯分子印迹聚合物(PPy-MIP)的电化学性能,提出了质子酸(PSS、SA、SSA)掺杂法,促进了吡咯的电聚合,降低了电荷转移电阻,增加了电化学比表面积。在提高电导率和亲和力方面,掺杂质子酸的聚吡咯分子印迹电化学传感器(PPy-MIECS)对尿素的响应分别比 PPy-MIECS 提高了 25 倍(PSS)、5 倍(SA)和 3 倍(SSA)。此外,PSS-PPy-MIECS 还通过了实际应用验证,其线性检测范围为 0.1 mM 至 100 mM,具有高选择性(α = 39.73)、可重复使用性(RSD% = 4.54 %)、可重复性(RSD% = 0.93 %)和稳定性(11 天)。质子酸掺杂法在 PSS-PEDOT-MIECS 至尿素和 PSS-PPy-MIECS 至葡萄糖中的优势扩大了其在 MIECS 性能增强设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanism of high sensitivity proton acids doped polypyrrole molecularly imprinted electrochemical sensor and its application in urea detection

Molecularly imprinted electrochemical sensor is a kind of convenient, fast, and stable analyzer, but the conductivity of electrode materials and their affinity with the analyte affect its performance. A proton acid (PSS, SA, SSA) doping method was proposed to improve the electrochemical performance of the polypyrrole molecularly imprinted polymer (PPy-MIP), which promoted the electropolymerization of pyrrole, reduced the charge transfer resistance, and increased the electrochemical surface area. In terms of both improving conductivity and affinity, the response of the proton acids doped the polypyrrole molecularly imprinted electrochemical sensors (PPy-MIECS) to urea was improved by 25-fold (PSS), 5-fold (SA), and 3-fold (SSA) over that of PPy-MIECS. In addition, the PSS-PPy-MIECS was validated for the practical application with a linear detection range from 0.1 mM to 100 mM, high selectivity (α = 39.73), reusability (RSD% = 4.54 %), reproducibility (RSD% = 0.93 %), and stability (11 days). The advantage of proton acid doping method in PSS-PEDOT-MIECS to urea and PSS-PPy-MIECS to glucose extended its application in the performance enhancement of MIECS design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Synthesis of shape-controlled covalent organic frameworks for light scattering detection of iron and chromium ions. Mesoporous DNA-Co@C nanofibers knitted aptasensors performing onsite determination of trace kanamycin residues. Construction of heterogeneously connected cobalt-based MOF-COF and its application in highly selective separation of trace lead ions. Sensitive detection of histamine utilizing the SERS platform combined with an azo coupling reaction and a composite hydrophobic layer. Smartphone-assisted portable swabs for blood glucose management: A point-of-use assay for dual-mode visual detection based on bifunctional carbon dots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1