不同的刺激会诱发人体产生不同的自律神经反应。

IF 1.8 4区 生物学 Q3 BIOLOGY Biology Open Pub Date : 2024-08-15 Epub Date: 2024-08-08 DOI:10.1242/bio.060205
Jonathon McPhetres
{"title":"不同的刺激会诱发人体产生不同的自律神经反应。","authors":"Jonathon McPhetres","doi":"10.1242/bio.060205","DOIUrl":null,"url":null,"abstract":"<p><p>This research provides an in-depth exploration into the triggers and corresponding autonomic responses of piloerection, a phenomenon prevalent across various species. In non-human species, piloerection occurs in reaction to a variety of environmental changes, including social interactions and temperature shifts. However, its understanding in humans has been confined to emotional contexts. This is problematic because it reflects solely upon subjective experience rather than an objective response to the environment. Further, given our shared evolutionary paths, piloerection should function similarly in humans and other animals. I observed 1198 piloerection episodes from eight participants while simultaneously recording multiple autonomic and body temperature indices, finding that piloerection in humans can be elicited by thermal, tactile, and audio-visual stimuli with equal effectiveness. The data also revealed variations in cardiac reactivity measures: audio-visual piloerection was associated with greater sympathetic arousal, while tactile piloerection was linked to greater parasympathetic arousal. Despite prevailing notions of piloerection as a vestigial response in humans, it does respond to decreases in skin temperature and is associated with a rise in skin temperature during episodes. This research underscores that piloerection in humans is not purely vestigial, nor is it solely an affective response to emotional stimuli. Rather, it is best understood as a reflexive response to environmental changes, suggesting a shared functional similarity with other species.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391818/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diverse stimuli induce piloerection and yield varied autonomic responses in humans.\",\"authors\":\"Jonathon McPhetres\",\"doi\":\"10.1242/bio.060205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research provides an in-depth exploration into the triggers and corresponding autonomic responses of piloerection, a phenomenon prevalent across various species. In non-human species, piloerection occurs in reaction to a variety of environmental changes, including social interactions and temperature shifts. However, its understanding in humans has been confined to emotional contexts. This is problematic because it reflects solely upon subjective experience rather than an objective response to the environment. Further, given our shared evolutionary paths, piloerection should function similarly in humans and other animals. I observed 1198 piloerection episodes from eight participants while simultaneously recording multiple autonomic and body temperature indices, finding that piloerection in humans can be elicited by thermal, tactile, and audio-visual stimuli with equal effectiveness. The data also revealed variations in cardiac reactivity measures: audio-visual piloerection was associated with greater sympathetic arousal, while tactile piloerection was linked to greater parasympathetic arousal. Despite prevailing notions of piloerection as a vestigial response in humans, it does respond to decreases in skin temperature and is associated with a rise in skin temperature during episodes. This research underscores that piloerection in humans is not purely vestigial, nor is it solely an affective response to emotional stimuli. Rather, it is best understood as a reflexive response to environmental changes, suggesting a shared functional similarity with other species.</p>\",\"PeriodicalId\":9216,\"journal\":{\"name\":\"Biology Open\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Open\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.060205\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060205","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究深入探讨了不同物种普遍存在的朝天鼻现象的诱因和相应的自律神经反应。在非人类物种中,朝天鼻会对各种环境变化做出反应,包括社会交往和温度变化。然而,人类对这种现象的了解仅限于情感方面。这是有问题的,因为它反映的仅仅是主观体验,而不是对环境的客观反应。此外,鉴于我们有着共同的进化路径,朝天鼻在人类和其他动物中的功能应该是相似的。我观察了八名参与者的 1198 次向后仰动作,同时记录了多种自律神经和体温指数,发现人类的向后仰动作可由热刺激、触觉刺激和视听刺激引起,且效果相同。数据还揭示了心脏反应性测量的变化:视听朝天鼻与更大的交感神经唤醒有关,而触觉朝天鼻则与更大的副交感神经唤醒有关。尽管人们普遍认为朝天鼻是人类的一种残余反应,但它确实会对皮肤温度的下降做出反应,并且在发作时与皮肤温度的升高有关。这项研究强调,人类的绒毛膜促性腺激素并非纯粹的既存反应,也不只是对情绪刺激的情感反应。相反,它最好被理解为对环境变化的反射性反应,这表明它与其他物种具有共同的功能相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diverse stimuli induce piloerection and yield varied autonomic responses in humans.

This research provides an in-depth exploration into the triggers and corresponding autonomic responses of piloerection, a phenomenon prevalent across various species. In non-human species, piloerection occurs in reaction to a variety of environmental changes, including social interactions and temperature shifts. However, its understanding in humans has been confined to emotional contexts. This is problematic because it reflects solely upon subjective experience rather than an objective response to the environment. Further, given our shared evolutionary paths, piloerection should function similarly in humans and other animals. I observed 1198 piloerection episodes from eight participants while simultaneously recording multiple autonomic and body temperature indices, finding that piloerection in humans can be elicited by thermal, tactile, and audio-visual stimuli with equal effectiveness. The data also revealed variations in cardiac reactivity measures: audio-visual piloerection was associated with greater sympathetic arousal, while tactile piloerection was linked to greater parasympathetic arousal. Despite prevailing notions of piloerection as a vestigial response in humans, it does respond to decreases in skin temperature and is associated with a rise in skin temperature during episodes. This research underscores that piloerection in humans is not purely vestigial, nor is it solely an affective response to emotional stimuli. Rather, it is best understood as a reflexive response to environmental changes, suggesting a shared functional similarity with other species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
期刊最新文献
Winging it: hummingbirds alter flying kinematics during molt. Breeding zebra finches prioritize reproductive bout over self-maintenance under food restriction. Glutaraldehyde-enhanced autofluorescence as a general tool for 3D morphological imaging. Sexual dimorphism and the impact of aging on ball rolling-associated locomotor behavior in Drosophila. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1