Marcus Larsson, Maria Ewerlöf, E Göran Salerud, Tomas Strömberg, Ingemar Fredriksson
{"title":"根据模拟多光谱数据训练的人工神经网络,用于皮肤微循环血氧饱和度的实时成像。","authors":"Marcus Larsson, Maria Ewerlöf, E Göran Salerud, Tomas Strömberg, Ingemar Fredriksson","doi":"10.1117/1.JBO.29.S3.S33304","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Imaging blood oxygen saturation ( <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation of <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> .</p><p><strong>Aim: </strong>We aim to develop a framework for training ANNs that estimates <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> in real time from multispectral data with a precision comparable to inverse MC.</p><p><strong>Approach: </strong>ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation.</p><p><strong>Results: </strong>The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An <i>in-vivo</i> example shows that inverse MC and ANN give almost identical <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> values with a mean absolute deviation of 1.3%-units.</p><p><strong>Conclusions: </strong>ANN can replace inverse MC and enable real-time imaging of microcirculatory <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 Suppl 3","pages":"S33304"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234456/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks trained on simulated multispectral data for real-time imaging of skin microcirculatory blood oxygen saturation.\",\"authors\":\"Marcus Larsson, Maria Ewerlöf, E Göran Salerud, Tomas Strömberg, Ingemar Fredriksson\",\"doi\":\"10.1117/1.JBO.29.S3.S33304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Imaging blood oxygen saturation ( <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation of <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> .</p><p><strong>Aim: </strong>We aim to develop a framework for training ANNs that estimates <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> in real time from multispectral data with a precision comparable to inverse MC.</p><p><strong>Approach: </strong>ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation.</p><p><strong>Results: </strong>The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An <i>in-vivo</i> example shows that inverse MC and ANN give almost identical <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> values with a mean absolute deviation of 1.3%-units.</p><p><strong>Conclusions: </strong>ANN can replace inverse MC and enable real-time imaging of microcirculatory <math> <mrow> <msub><mrow><mi>SO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 Suppl 3\",\"pages\":\"S33304\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.S3.S33304\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.S3.S33304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
意义重大:皮肤血氧饱和度(SO 2)成像在研究缺血组织时具有临床价值。新出现的多光谱快照照相机可实现实时成像,但受限于使用反蒙特卡罗(MC)这一分析多光谱数据的黄金标准时分析速度较慢。使用人工神经网络(ANN)可以大大加快分析速度,但需要大量来自各种组织类型的高质量训练数据,才能精确估计 SO 2:方法:使用一个模型中的合成数据训练 ANN,该模型包括对组织和硬件特征中光传播的 MC 模拟。该模型包括与生理相关的光学特性变化、独特的传感器特性、照明光谱变化和探测器噪声。这种方法可以快速生成高质量的训练数据,涵盖不同的组织类型和皮肤色素沉着:结果:ANN 实现在 0.11 秒内分析一幅图像,比反 MC 至少快 10,000 倍。通过对传感器光谱响应的内部校准,硬件建模得到了明显改善。一个体内实例显示,逆 MC 和 ANN 得出的 SO 2 值几乎完全相同,平均绝对偏差为 1.3%-单位:结论:如果在生成训练数据时对组织和硬件进行详细而精确的建模,则方差网络可取代逆 MC,实现皮肤微循环 SO 2 的实时成像。
Artificial neural networks trained on simulated multispectral data for real-time imaging of skin microcirculatory blood oxygen saturation.
Significance: Imaging blood oxygen saturation ( ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation of .
Aim: We aim to develop a framework for training ANNs that estimates in real time from multispectral data with a precision comparable to inverse MC.
Approach: ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation.
Results: The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An in-vivo example shows that inverse MC and ANN give almost identical values with a mean absolute deviation of 1.3%-units.
Conclusions: ANN can replace inverse MC and enable real-time imaging of microcirculatory in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.