Antônio Carlos de A Teles Filho, Deisy J D Sanchez, Arabela G A Viana, Sheheryar Sheheryar, Denise D Guerreiro, Ivan C Bustamante-Filho, Aline M A Martins, Marcelo V Sousa, Carlos A O Ricart, Wagner Fontes, Arlindo A Moura
{"title":"马胚胎植入前蛋白质组的前瞻性研究。","authors":"Antônio Carlos de A Teles Filho, Deisy J D Sanchez, Arabela G A Viana, Sheheryar Sheheryar, Denise D Guerreiro, Ivan C Bustamante-Filho, Aline M A Martins, Marcelo V Sousa, Carlos A O Ricart, Wagner Fontes, Arlindo A Moura","doi":"10.1111/rda.14663","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was conducted to investigate the global proteome of 8-day-old equine blastocysts. Follicular dynamics of eight adult mares were monitored by ultrasonography and inseminated 24 h after the detection of a preovulatory follicle. Four expanded blastocysts were recovered, pooled, and subjected to protein extraction and mass spectrometry. Protein identification was conducted based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, and PepExplorer). Enrichment analysis was performed using g:Profiler, Panther, and String platforms. After the elimination of identification redundancies among search tools (at three levels, based on identifiers, peptides, and cross-database mapping), 1977 proteins were reliably identified in the samples of equine embryos. Proteomic analysis unveiled robust metabolic activity in the 8-day equine embryo, highlighted by an abundance of proteins engaged in key metabolic pathways like the TCA cycle, ATP biosynthesis, and glycolysis. The prevalence of chaperones among highly abundant proteins suggests that regulation of protein folding, and degradation is a key process during embryo development. These findings pave the way for developing new strategies to improve equine embryo media and optimize in vitro fertilization techniques.</p>","PeriodicalId":21035,"journal":{"name":"Reproduction in Domestic Animals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A prospective study of the proteome of equine pre-implantation embryo.\",\"authors\":\"Antônio Carlos de A Teles Filho, Deisy J D Sanchez, Arabela G A Viana, Sheheryar Sheheryar, Denise D Guerreiro, Ivan C Bustamante-Filho, Aline M A Martins, Marcelo V Sousa, Carlos A O Ricart, Wagner Fontes, Arlindo A Moura\",\"doi\":\"10.1111/rda.14663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study was conducted to investigate the global proteome of 8-day-old equine blastocysts. Follicular dynamics of eight adult mares were monitored by ultrasonography and inseminated 24 h after the detection of a preovulatory follicle. Four expanded blastocysts were recovered, pooled, and subjected to protein extraction and mass spectrometry. Protein identification was conducted based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, and PepExplorer). Enrichment analysis was performed using g:Profiler, Panther, and String platforms. After the elimination of identification redundancies among search tools (at three levels, based on identifiers, peptides, and cross-database mapping), 1977 proteins were reliably identified in the samples of equine embryos. Proteomic analysis unveiled robust metabolic activity in the 8-day equine embryo, highlighted by an abundance of proteins engaged in key metabolic pathways like the TCA cycle, ATP biosynthesis, and glycolysis. The prevalence of chaperones among highly abundant proteins suggests that regulation of protein folding, and degradation is a key process during embryo development. These findings pave the way for developing new strategies to improve equine embryo media and optimize in vitro fertilization techniques.</p>\",\"PeriodicalId\":21035,\"journal\":{\"name\":\"Reproduction in Domestic Animals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction in Domestic Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/rda.14663\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction in Domestic Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/rda.14663","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
A prospective study of the proteome of equine pre-implantation embryo.
The present study was conducted to investigate the global proteome of 8-day-old equine blastocysts. Follicular dynamics of eight adult mares were monitored by ultrasonography and inseminated 24 h after the detection of a preovulatory follicle. Four expanded blastocysts were recovered, pooled, and subjected to protein extraction and mass spectrometry. Protein identification was conducted based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, and PepExplorer). Enrichment analysis was performed using g:Profiler, Panther, and String platforms. After the elimination of identification redundancies among search tools (at three levels, based on identifiers, peptides, and cross-database mapping), 1977 proteins were reliably identified in the samples of equine embryos. Proteomic analysis unveiled robust metabolic activity in the 8-day equine embryo, highlighted by an abundance of proteins engaged in key metabolic pathways like the TCA cycle, ATP biosynthesis, and glycolysis. The prevalence of chaperones among highly abundant proteins suggests that regulation of protein folding, and degradation is a key process during embryo development. These findings pave the way for developing new strategies to improve equine embryo media and optimize in vitro fertilization techniques.
期刊介绍:
The journal offers comprehensive information concerning physiology, pathology, and biotechnology of reproduction. Topical results are currently published in original papers, reviews, and short communications with particular attention to investigations on practicable techniques.
Carefully selected reports, e. g. on embryo transfer and associated biotechnologies, gene transfer, and spermatology provide a link between basic research and clinical application. The journal applies to breeders, veterinarians, and biologists, and is also of interest in human medicine. Interdisciplinary cooperation is documented in the proceedings of the joint annual meetings.
Fields of interest: Animal reproduction and biotechnology with special regard to investigations on applied and clinical research.