{"title":"一种新的果胶杆菌噬菌体属通过针对丹麦软腐病分离物的几个种类显示出广泛的宿主范围。","authors":"","doi":"10.1016/j.virusres.2024.199435","DOIUrl":null,"url":null,"abstract":"<div><p>The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus <em>Pectobacteriaceae</em> are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within <em>Pectobacterium</em>. Here we focus on seven of these phages representing a new genus primarily targeting <em>P. brasiliense</em>; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class <em>Caudoviricetes,</em> with double-stranded DNA genomes varying from 39 kb to 43 kb. <em>In silico</em> host range prediction using a CRISPR-Cas spacer database suggested both <em>P. brasiliense, P. polaris</em> and <em>P. versatile</em> as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the <em>in silico</em> host range prediction, as the genus as a group were able to infect all three <em>Pectobacterium</em> species. Phages did, however, primarily target <em>P. brasiliense</em> isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more <em>Pectobacterium</em> species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing <em>Pectobacterium</em> species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016817022400128X/pdfft?md5=f42ba46bccafe511812fa9740b7dee42&pid=1-s2.0-S016817022400128X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel genus of Pectobacterium bacteriophages display broad host range by targeting several species of Danish soft rot isolates\",\"authors\":\"\",\"doi\":\"10.1016/j.virusres.2024.199435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus <em>Pectobacteriaceae</em> are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within <em>Pectobacterium</em>. Here we focus on seven of these phages representing a new genus primarily targeting <em>P. brasiliense</em>; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class <em>Caudoviricetes,</em> with double-stranded DNA genomes varying from 39 kb to 43 kb. <em>In silico</em> host range prediction using a CRISPR-Cas spacer database suggested both <em>P. brasiliense, P. polaris</em> and <em>P. versatile</em> as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the <em>in silico</em> host range prediction, as the genus as a group were able to infect all three <em>Pectobacterium</em> species. Phages did, however, primarily target <em>P. brasiliense</em> isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more <em>Pectobacterium</em> species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing <em>Pectobacterium</em> species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.</p></div>\",\"PeriodicalId\":23483,\"journal\":{\"name\":\"Virus research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016817022400128X/pdfft?md5=f42ba46bccafe511812fa9740b7dee42&pid=1-s2.0-S016817022400128X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016817022400128X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016817022400128X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
A novel genus of Pectobacterium bacteriophages display broad host range by targeting several species of Danish soft rot isolates
The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.