Riccardo Perfetti MD, PhD, Evan Bailey MD, Stella Wang MPH, MS, Richard Mills PhD, Ramon Mohanlal MD, PhD, MBA, Shoshana Shendelman PhD
{"title":"新型醛糖还原酶抑制剂 Govorestat (AT-007) 的安全性、药代动力学和药效学:1/2 期研究参与者单剂量和多剂量用药后的研究结果。","authors":"Riccardo Perfetti MD, PhD, Evan Bailey MD, Stella Wang MPH, MS, Richard Mills PhD, Ramon Mohanlal MD, PhD, MBA, Shoshana Shendelman PhD","doi":"10.1002/jcph.2495","DOIUrl":null,"url":null,"abstract":"<p>In classic galactosemia (CG) patients, aldose reductase (AR) converts galactose to galactitol. In a phase 1/2, placebo-controlled study (NCT04117711), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of govorestat were evaluated after single and multiple ascending doses (0.5-40 mg/kg) in healthy adults (n = 81) and CG patients (n = 14). Levels of govorestat in plasma and cerebrospinal fluid (CSF) and blood levels of galactitol, galactose, and galactose-1-phosphate (Gal-1p) were measured for population PK and PK/PD analyses. Govorestat was well tolerated. Adverse event frequency was comparable between placebo and govorestat. Govorestat PK displayed a 2-compartment model with sequential zero- and first-order absorption, and no effect of demographic factors. Multiple-dose PK of govorestat was linear in the 0.5-40 mg/kg range, and CSF levels increased dose dependently. Elimination half-life was ∼10 h. PK/PD modeling supported once-daily dosing. Change from baseline in galactitol was −15% ± 9% with placebo and −19% ± 10%, −46% ± 4%, and −51% ± 5% with govorestat 5, 20, and 40 mg/kg, respectively, thus was similar for 20 and 40 mg/kg. Govorestat did not affect galactose or Gal-1p levels. In conclusion, govorestat displayed a favorable safety, PK, and PD profile in humans, and reduced galactitol levels in the same magnitude (∼50%) as in a rat model of CG that demonstrated an efficacy benefit on neurological, behavioral, and ocular outcomes.</p>","PeriodicalId":22751,"journal":{"name":"The Journal of Clinical Pharmacology","volume":"64 11","pages":"1397-1406"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcph.2495","citationCount":"0","resultStr":"{\"title\":\"Safety, Pharmacokinetics, and Pharmacodynamics of the New Aldose Reductase Inhibitor Govorestat (AT-007) After a Single and Multiple Doses in Participants in a Phase 1/2 Study\",\"authors\":\"Riccardo Perfetti MD, PhD, Evan Bailey MD, Stella Wang MPH, MS, Richard Mills PhD, Ramon Mohanlal MD, PhD, MBA, Shoshana Shendelman PhD\",\"doi\":\"10.1002/jcph.2495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In classic galactosemia (CG) patients, aldose reductase (AR) converts galactose to galactitol. In a phase 1/2, placebo-controlled study (NCT04117711), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of govorestat were evaluated after single and multiple ascending doses (0.5-40 mg/kg) in healthy adults (n = 81) and CG patients (n = 14). Levels of govorestat in plasma and cerebrospinal fluid (CSF) and blood levels of galactitol, galactose, and galactose-1-phosphate (Gal-1p) were measured for population PK and PK/PD analyses. Govorestat was well tolerated. Adverse event frequency was comparable between placebo and govorestat. Govorestat PK displayed a 2-compartment model with sequential zero- and first-order absorption, and no effect of demographic factors. Multiple-dose PK of govorestat was linear in the 0.5-40 mg/kg range, and CSF levels increased dose dependently. Elimination half-life was ∼10 h. PK/PD modeling supported once-daily dosing. Change from baseline in galactitol was −15% ± 9% with placebo and −19% ± 10%, −46% ± 4%, and −51% ± 5% with govorestat 5, 20, and 40 mg/kg, respectively, thus was similar for 20 and 40 mg/kg. Govorestat did not affect galactose or Gal-1p levels. In conclusion, govorestat displayed a favorable safety, PK, and PD profile in humans, and reduced galactitol levels in the same magnitude (∼50%) as in a rat model of CG that demonstrated an efficacy benefit on neurological, behavioral, and ocular outcomes.</p>\",\"PeriodicalId\":22751,\"journal\":{\"name\":\"The Journal of Clinical Pharmacology\",\"volume\":\"64 11\",\"pages\":\"1397-1406\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcph.2495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcph.2495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcph.2495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety, Pharmacokinetics, and Pharmacodynamics of the New Aldose Reductase Inhibitor Govorestat (AT-007) After a Single and Multiple Doses in Participants in a Phase 1/2 Study
In classic galactosemia (CG) patients, aldose reductase (AR) converts galactose to galactitol. In a phase 1/2, placebo-controlled study (NCT04117711), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of govorestat were evaluated after single and multiple ascending doses (0.5-40 mg/kg) in healthy adults (n = 81) and CG patients (n = 14). Levels of govorestat in plasma and cerebrospinal fluid (CSF) and blood levels of galactitol, galactose, and galactose-1-phosphate (Gal-1p) were measured for population PK and PK/PD analyses. Govorestat was well tolerated. Adverse event frequency was comparable between placebo and govorestat. Govorestat PK displayed a 2-compartment model with sequential zero- and first-order absorption, and no effect of demographic factors. Multiple-dose PK of govorestat was linear in the 0.5-40 mg/kg range, and CSF levels increased dose dependently. Elimination half-life was ∼10 h. PK/PD modeling supported once-daily dosing. Change from baseline in galactitol was −15% ± 9% with placebo and −19% ± 10%, −46% ± 4%, and −51% ± 5% with govorestat 5, 20, and 40 mg/kg, respectively, thus was similar for 20 and 40 mg/kg. Govorestat did not affect galactose or Gal-1p levels. In conclusion, govorestat displayed a favorable safety, PK, and PD profile in humans, and reduced galactitol levels in the same magnitude (∼50%) as in a rat model of CG that demonstrated an efficacy benefit on neurological, behavioral, and ocular outcomes.