{"title":"吸气肌肉负荷运动训练对增量自行车运动时通气反应和肋间肌脱氧的影响","authors":"Jun Koike, Takeshi Ogawa","doi":"10.1080/02701367.2024.2365291","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> This study evaluated the effects of exercise training (ET) and inspiratory muscle-loaded exercise training (IMLET) on ventilatory response and intercostal muscle deoxygenation levels during incremental cycling exercise. <b>Methods:</b> Twenty-one male participants were randomly divided into IMLET (<i>n</i> = 10) or ET (<i>n</i> = 11) groups. All participants underwent a 4-week cycling exercise training at 60% peak oxygen uptake. IMLET loaded 50% of maximal inspiratory pressure (P<sub>Imax</sub>). Respiratory muscle strength test, respiratory muscle endurance test (RMET), resting hypoxic ventilatory responsiveness (HVR) test, and incremental cycling test were performed pre- and post-training. <b>Results:</b> The extent of improvement in the P<sub>Imax</sub> was significantly greater in the IMLET group (24%) than in the ET group (8%) (<i>p</i> = .018), and an extended RMET time was observed in the IMLET group (<i>p</i> < .001). Minute ventilation (<math><mrow><msub><mover><mi>V</mi><mo>˙</mo></mover><mi>E</mi></msub></mrow></math>) during exercise was unchanged in both groups before and after training, but tidal volume during exercise increased in the IMLET group. The increase in the exercise intensity threshold for muscle deoxygenation was similar in both groups (<i>p</i> < .001). HVR remained unchanged in both groups post-training. The exercise duration for the incremental exercise until reaching fatigue increased by 7.9% after ET and 6.9% after IMLET (<i>p</i> < .001). <b>Conclusion:</b> The 4-week IMLET improved respiratory muscle strength and endurance but did not alter HVR. Respiratory muscle deoxygenation was alleviated by exercise training, with a limited impact of inspiratory load training.</p>","PeriodicalId":94191,"journal":{"name":"Research quarterly for exercise and sport","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Inspiratory Muscle-Loaded Exercise Training on Ventilatory Response and Intercostal Muscle Deoxygenation During Incremental Cycling Exercise.\",\"authors\":\"Jun Koike, Takeshi Ogawa\",\"doi\":\"10.1080/02701367.2024.2365291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> This study evaluated the effects of exercise training (ET) and inspiratory muscle-loaded exercise training (IMLET) on ventilatory response and intercostal muscle deoxygenation levels during incremental cycling exercise. <b>Methods:</b> Twenty-one male participants were randomly divided into IMLET (<i>n</i> = 10) or ET (<i>n</i> = 11) groups. All participants underwent a 4-week cycling exercise training at 60% peak oxygen uptake. IMLET loaded 50% of maximal inspiratory pressure (P<sub>Imax</sub>). Respiratory muscle strength test, respiratory muscle endurance test (RMET), resting hypoxic ventilatory responsiveness (HVR) test, and incremental cycling test were performed pre- and post-training. <b>Results:</b> The extent of improvement in the P<sub>Imax</sub> was significantly greater in the IMLET group (24%) than in the ET group (8%) (<i>p</i> = .018), and an extended RMET time was observed in the IMLET group (<i>p</i> < .001). Minute ventilation (<math><mrow><msub><mover><mi>V</mi><mo>˙</mo></mover><mi>E</mi></msub></mrow></math>) during exercise was unchanged in both groups before and after training, but tidal volume during exercise increased in the IMLET group. The increase in the exercise intensity threshold for muscle deoxygenation was similar in both groups (<i>p</i> < .001). HVR remained unchanged in both groups post-training. The exercise duration for the incremental exercise until reaching fatigue increased by 7.9% after ET and 6.9% after IMLET (<i>p</i> < .001). <b>Conclusion:</b> The 4-week IMLET improved respiratory muscle strength and endurance but did not alter HVR. Respiratory muscle deoxygenation was alleviated by exercise training, with a limited impact of inspiratory load training.</p>\",\"PeriodicalId\":94191,\"journal\":{\"name\":\"Research quarterly for exercise and sport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research quarterly for exercise and sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02701367.2024.2365291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research quarterly for exercise and sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02701367.2024.2365291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Inspiratory Muscle-Loaded Exercise Training on Ventilatory Response and Intercostal Muscle Deoxygenation During Incremental Cycling Exercise.
Purpose: This study evaluated the effects of exercise training (ET) and inspiratory muscle-loaded exercise training (IMLET) on ventilatory response and intercostal muscle deoxygenation levels during incremental cycling exercise. Methods: Twenty-one male participants were randomly divided into IMLET (n = 10) or ET (n = 11) groups. All participants underwent a 4-week cycling exercise training at 60% peak oxygen uptake. IMLET loaded 50% of maximal inspiratory pressure (PImax). Respiratory muscle strength test, respiratory muscle endurance test (RMET), resting hypoxic ventilatory responsiveness (HVR) test, and incremental cycling test were performed pre- and post-training. Results: The extent of improvement in the PImax was significantly greater in the IMLET group (24%) than in the ET group (8%) (p = .018), and an extended RMET time was observed in the IMLET group (p < .001). Minute ventilation () during exercise was unchanged in both groups before and after training, but tidal volume during exercise increased in the IMLET group. The increase in the exercise intensity threshold for muscle deoxygenation was similar in both groups (p < .001). HVR remained unchanged in both groups post-training. The exercise duration for the incremental exercise until reaching fatigue increased by 7.9% after ET and 6.9% after IMLET (p < .001). Conclusion: The 4-week IMLET improved respiratory muscle strength and endurance but did not alter HVR. Respiratory muscle deoxygenation was alleviated by exercise training, with a limited impact of inspiratory load training.