Dehua Liu , Selasi Kwashie , Yidi Zhang , Guangtong Zhou , Michael Bewong , Xiaoying Wu , Xi Guo , Keqing He , Zaiwen Feng
{"title":"发现图实体依赖关系(GED)的高效方法","authors":"Dehua Liu , Selasi Kwashie , Yidi Zhang , Guangtong Zhou , Michael Bewong , Xiaoying Wu , Xi Guo , Keqing He , Zaiwen Feng","doi":"10.1016/j.is.2024.102421","DOIUrl":null,"url":null,"abstract":"<div><p>Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs—finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102421"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000796/pdfft?md5=8af2f9051185a5f57df5320cb4c1b7bd&pid=1-s2.0-S0306437924000796-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient approach for discovering Graph Entity Dependencies (GEDs)\",\"authors\":\"Dehua Liu , Selasi Kwashie , Yidi Zhang , Guangtong Zhou , Michael Bewong , Xiaoying Wu , Xi Guo , Keqing He , Zaiwen Feng\",\"doi\":\"10.1016/j.is.2024.102421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs—finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"125 \",\"pages\":\"Article 102421\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000796/pdfft?md5=8af2f9051185a5f57df5320cb4c1b7bd&pid=1-s2.0-S0306437924000796-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000796\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000796","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An efficient approach for discovering Graph Entity Dependencies (GEDs)
Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs—finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.