发现图实体依赖关系(GED)的高效方法

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Systems Pub Date : 2024-06-28 DOI:10.1016/j.is.2024.102421
Dehua Liu , Selasi Kwashie , Yidi Zhang , Guangtong Zhou , Michael Bewong , Xiaoying Wu , Xi Guo , Keqing He , Zaiwen Feng
{"title":"发现图实体依赖关系(GED)的高效方法","authors":"Dehua Liu ,&nbsp;Selasi Kwashie ,&nbsp;Yidi Zhang ,&nbsp;Guangtong Zhou ,&nbsp;Michael Bewong ,&nbsp;Xiaoying Wu ,&nbsp;Xi Guo ,&nbsp;Keqing He ,&nbsp;Zaiwen Feng","doi":"10.1016/j.is.2024.102421","DOIUrl":null,"url":null,"abstract":"<div><p>Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs—finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102421"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924000796/pdfft?md5=8af2f9051185a5f57df5320cb4c1b7bd&pid=1-s2.0-S0306437924000796-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient approach for discovering Graph Entity Dependencies (GEDs)\",\"authors\":\"Dehua Liu ,&nbsp;Selasi Kwashie ,&nbsp;Yidi Zhang ,&nbsp;Guangtong Zhou ,&nbsp;Michael Bewong ,&nbsp;Xiaoying Wu ,&nbsp;Xi Guo ,&nbsp;Keqing He ,&nbsp;Zaiwen Feng\",\"doi\":\"10.1016/j.is.2024.102421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs—finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"125 \",\"pages\":\"Article 102421\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000796/pdfft?md5=8af2f9051185a5f57df5320cb4c1b7bd&pid=1-s2.0-S0306437924000796-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000796\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000796","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

图实体依赖性(GED)是一种新颖的图约束,它统一了属性图的键和功能依赖性。它们在许多现实世界的数据质量和数据管理任务中都很有用,包括社交媒体网络的事实检查和实体解析。在本文中,我们研究了 GED 的发现问题--在给定的图数据中找到有效 GED 的最小覆盖。我们将该问题形式化,并提出了一种有效且高效的方法来克服 GED 发现中的主要瓶颈。特别是,我们利用现有的图分割算法来实现快速的 GED 范围发现,并在令人望而却步的庞大候选依赖空间中采用有效的剪枝策略。此外,我们还根据最小描述长度原则定义了 GED 的趣味性度量,以便对挖掘出的 GED 覆盖集进行评分和排序。最后,我们通过在真实世界基准图数据集上进行大量实验,证明了我们的 GED 发现方法的可扩展性和有效性;并介绍了所发现的规则在不同下游数据质量管理应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient approach for discovering Graph Entity Dependencies (GEDs)

Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs—finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
期刊最新文献
STracker: A framework for identifying sentiment changes in customer feedbacks Two-level massive string dictionaries A generative and discriminative model for diversity-promoting recommendation Soundness unknotted: An efficient soundness checking algorithm for arbitrary cyclic process models by loosening loops The composition diagram of a complex process: Enhancing understanding of hierarchical business processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1