{"title":"关于$ζ(5)$及更高奇数Zeta值非理性的说明","authors":"Shekhar Suman","doi":"arxiv-2407.07121","DOIUrl":null,"url":null,"abstract":"For $n\\in\\mathbb{N}$ we define a double integral \\begin{equation*}\nI_n=\\frac{1}{24}\\int_0^1\\int_0^1 \\frac{-\\log^3(xy)}{1+xy} (xy(1-xy))^n \\\ndxdy\\end{equation*} We denote $d_n=\\text{lcm}(1,2,...,n)$ and prove that for\nall $n\\in\\mathbb{N}$, \\begin{equation*} d_n I_n= 15 (-1)^n 2^{n-4} d_n\n\\zeta(5)+(-1)^{n+1} d_n \\sum_{r=0}^{n} \\binom{n}{r}\\left(\\sum_{k=1}^{n+r}\n\\frac{(-1)^{k-1}}{k^5}\\right) \\end{equation*} Now if $\\zeta(5)$ is rational,\nthen $\\zeta(5)=a/b$, $(a,b)=1$ and $a,b\\in\\mathbb{N}$. Then we take $n\\geq b$\nso that $b|d_n$. We show that for all $n\\geq 1$, $0<d_n I_n<1$. We denote\n\\begin{equation*} S_n=d_n \\sum_{r=0}^{n} \\binom{n}{r}\\left(\\sum_{k=1}^{n+r}\n\\frac{(-1)^{k-1}}{k^5}\\right) \\end{equation*} We prove for all $n\\geq b$,\n\\begin{equation*} d_n I_n+(-1)^{n}\n\\left\\{S_n\\right\\}\\in\\mathbb{Z}\\end{equation*} where $\\{x\\}=x-[x]$ denotes the\nfractional part of $x$ and $[x]$ denotes the greatest integer less than or\nequal to $x$. Later we show that the only integer value admissible is\n\\begin{equation*} d_n I_n+(-1)^{n} \\left\\{S_n\\right\\}=0\\ \\ \\ \\text{or}\\ \\ \\ d_n\nI_n+(-1)^{n} \\left\\{S_n\\right\\}=1\\end{equation*} Finally we prove that these\nabove values are not possible. This gives a contradiction to our assumption\nthat $\\zeta(5)$ is rational. Similarly for all $m\\geq 3$ and $n\\geq 1$, by\ndefining \\begin{equation*} I_{n,m}=\\frac{1}{\\Gamma(2m+1)}\\int_0^1\\int_0^1\n\\frac{-\\log^{2m-1}(xy)}{1+xy} (xy(1-xy))^n \\ dxdy\\end{equation*} where\n$\\Gamma(s)$ denotes the Gamma function, we give an extension of the above proof\nto prove the irrationality of higher odd zeta values $\\zeta(2m+1)$ for all\n$m\\geq 3$","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the Irrationality of $ζ(5)$ and Higher Odd Zeta Values\",\"authors\":\"Shekhar Suman\",\"doi\":\"arxiv-2407.07121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $n\\\\in\\\\mathbb{N}$ we define a double integral \\\\begin{equation*}\\nI_n=\\\\frac{1}{24}\\\\int_0^1\\\\int_0^1 \\\\frac{-\\\\log^3(xy)}{1+xy} (xy(1-xy))^n \\\\\\ndxdy\\\\end{equation*} We denote $d_n=\\\\text{lcm}(1,2,...,n)$ and prove that for\\nall $n\\\\in\\\\mathbb{N}$, \\\\begin{equation*} d_n I_n= 15 (-1)^n 2^{n-4} d_n\\n\\\\zeta(5)+(-1)^{n+1} d_n \\\\sum_{r=0}^{n} \\\\binom{n}{r}\\\\left(\\\\sum_{k=1}^{n+r}\\n\\\\frac{(-1)^{k-1}}{k^5}\\\\right) \\\\end{equation*} Now if $\\\\zeta(5)$ is rational,\\nthen $\\\\zeta(5)=a/b$, $(a,b)=1$ and $a,b\\\\in\\\\mathbb{N}$. Then we take $n\\\\geq b$\\nso that $b|d_n$. We show that for all $n\\\\geq 1$, $0<d_n I_n<1$. We denote\\n\\\\begin{equation*} S_n=d_n \\\\sum_{r=0}^{n} \\\\binom{n}{r}\\\\left(\\\\sum_{k=1}^{n+r}\\n\\\\frac{(-1)^{k-1}}{k^5}\\\\right) \\\\end{equation*} We prove for all $n\\\\geq b$,\\n\\\\begin{equation*} d_n I_n+(-1)^{n}\\n\\\\left\\\\{S_n\\\\right\\\\}\\\\in\\\\mathbb{Z}\\\\end{equation*} where $\\\\{x\\\\}=x-[x]$ denotes the\\nfractional part of $x$ and $[x]$ denotes the greatest integer less than or\\nequal to $x$. Later we show that the only integer value admissible is\\n\\\\begin{equation*} d_n I_n+(-1)^{n} \\\\left\\\\{S_n\\\\right\\\\}=0\\\\ \\\\ \\\\ \\\\text{or}\\\\ \\\\ \\\\ d_n\\nI_n+(-1)^{n} \\\\left\\\\{S_n\\\\right\\\\}=1\\\\end{equation*} Finally we prove that these\\nabove values are not possible. This gives a contradiction to our assumption\\nthat $\\\\zeta(5)$ is rational. Similarly for all $m\\\\geq 3$ and $n\\\\geq 1$, by\\ndefining \\\\begin{equation*} I_{n,m}=\\\\frac{1}{\\\\Gamma(2m+1)}\\\\int_0^1\\\\int_0^1\\n\\\\frac{-\\\\log^{2m-1}(xy)}{1+xy} (xy(1-xy))^n \\\\ dxdy\\\\end{equation*} where\\n$\\\\Gamma(s)$ denotes the Gamma function, we give an extension of the above proof\\nto prove the irrationality of higher odd zeta values $\\\\zeta(2m+1)$ for all\\n$m\\\\geq 3$\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on the Irrationality of $ζ(5)$ and Higher Odd Zeta Values
For $n\in\mathbb{N}$ we define a double integral \begin{equation*}
I_n=\frac{1}{24}\int_0^1\int_0^1 \frac{-\log^3(xy)}{1+xy} (xy(1-xy))^n \
dxdy\end{equation*} We denote $d_n=\text{lcm}(1,2,...,n)$ and prove that for
all $n\in\mathbb{N}$, \begin{equation*} d_n I_n= 15 (-1)^n 2^{n-4} d_n
\zeta(5)+(-1)^{n+1} d_n \sum_{r=0}^{n} \binom{n}{r}\left(\sum_{k=1}^{n+r}
\frac{(-1)^{k-1}}{k^5}\right) \end{equation*} Now if $\zeta(5)$ is rational,
then $\zeta(5)=a/b$, $(a,b)=1$ and $a,b\in\mathbb{N}$. Then we take $n\geq b$
so that $b|d_n$. We show that for all $n\geq 1$, $0