论检验 PINN 两种变体在验证广义非线性薛定谔方程中局部波解的预测能力

Thulasidharan K., Sinthuja N., Vishnu Priya N., Senthilvelan M
{"title":"论检验 PINN 两种变体在验证广义非线性薛定谔方程中局部波解的预测能力","authors":"Thulasidharan K., Sinthuja N., Vishnu Priya N., Senthilvelan M","doi":"arxiv-2407.07415","DOIUrl":null,"url":null,"abstract":"We introduce a novel neural network structure called Strongly Constrained\nTheory-Guided Neural Network (SCTgNN), to investigate the behaviours of the\nlocalized solutions of the generalized nonlinear Schr\\\"{o}dinger (NLS)\nequation. This equation comprises four physically significant nonlinear\nevolution equations, namely, (i) NLS equation, Hirota equation\nLakshmanan-Porsezian-Daniel (LPD) equation and fifth-order NLS equation. The\ngeneralized NLS equation demonstrates nonlinear effects up to quintic order,\nindicating rich and complex dynamics in various fields of physics. By combining\nconcepts from the Physics-Informed Neural Network (PINN) and Theory-Guided\nNeural Network (TgNN) models, SCTgNN aims to enhance our understanding of\ncomplex phenomena, particularly within nonlinear systems that defy conventional\npatterns. To begin, we employ the TgNN method to predict the behaviours of\nlocalized waves, including solitons, rogue waves, and breathers, within the\ngeneralized NLS equation. We then use SCTgNN to predict the aforementioned\nlocalized solutions and calculate the mean square errors in both SCTgNN and\nTgNN in predicting these three localized solutions. Our findings reveal that\nboth models excel in understanding complex behaviours and provide predictions\nacross a wide variety of situations.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On examining the predictive capabilities of two variants of PINN in validating localised wave solutions in the generalized nonlinear Schrödinger equation\",\"authors\":\"Thulasidharan K., Sinthuja N., Vishnu Priya N., Senthilvelan M\",\"doi\":\"arxiv-2407.07415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel neural network structure called Strongly Constrained\\nTheory-Guided Neural Network (SCTgNN), to investigate the behaviours of the\\nlocalized solutions of the generalized nonlinear Schr\\\\\\\"{o}dinger (NLS)\\nequation. This equation comprises four physically significant nonlinear\\nevolution equations, namely, (i) NLS equation, Hirota equation\\nLakshmanan-Porsezian-Daniel (LPD) equation and fifth-order NLS equation. The\\ngeneralized NLS equation demonstrates nonlinear effects up to quintic order,\\nindicating rich and complex dynamics in various fields of physics. By combining\\nconcepts from the Physics-Informed Neural Network (PINN) and Theory-Guided\\nNeural Network (TgNN) models, SCTgNN aims to enhance our understanding of\\ncomplex phenomena, particularly within nonlinear systems that defy conventional\\npatterns. To begin, we employ the TgNN method to predict the behaviours of\\nlocalized waves, including solitons, rogue waves, and breathers, within the\\ngeneralized NLS equation. We then use SCTgNN to predict the aforementioned\\nlocalized solutions and calculate the mean square errors in both SCTgNN and\\nTgNN in predicting these three localized solutions. Our findings reveal that\\nboth models excel in understanding complex behaviours and provide predictions\\nacross a wide variety of situations.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种名为 "强约束理论指导神经网络(SCTgNN)"的新型神经网络结构,用于研究广义非线性薛定谔方程(NLS)的局部解的行为。该方程包括四个物理上重要的非线性革命方程,即 (i) NLS 方程、Hirota 方程、Lakshmanan-Porsezian-Daniel(LPD)方程和五阶 NLS 方程。广义 NLS 方程展示了高达五阶的非线性效应,显示了物理学各领域丰富而复杂的动力学。通过结合物理信息神经网络(PINN)和理论指导神经网络(TgNN)模型的概念,SCTgNN 旨在增强我们对复杂现象的理解,尤其是对非线性系统中违背传统模式的现象的理解。首先,我们采用 TgNN 方法来预测广义 NLS 方程中局部波的行为,包括孤子、流氓波和呼吸波。然后,我们使用 SCTgNN 预测上述局部解,并计算 SCTgNN 和 TgNN 在预测这三种局部解时的均方误差。我们的研究结果表明,这两种模型都能很好地理解复杂行为,并能预测各种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On examining the predictive capabilities of two variants of PINN in validating localised wave solutions in the generalized nonlinear Schrödinger equation
We introduce a novel neural network structure called Strongly Constrained Theory-Guided Neural Network (SCTgNN), to investigate the behaviours of the localized solutions of the generalized nonlinear Schr\"{o}dinger (NLS) equation. This equation comprises four physically significant nonlinear evolution equations, namely, (i) NLS equation, Hirota equation Lakshmanan-Porsezian-Daniel (LPD) equation and fifth-order NLS equation. The generalized NLS equation demonstrates nonlinear effects up to quintic order, indicating rich and complex dynamics in various fields of physics. By combining concepts from the Physics-Informed Neural Network (PINN) and Theory-Guided Neural Network (TgNN) models, SCTgNN aims to enhance our understanding of complex phenomena, particularly within nonlinear systems that defy conventional patterns. To begin, we employ the TgNN method to predict the behaviours of localized waves, including solitons, rogue waves, and breathers, within the generalized NLS equation. We then use SCTgNN to predict the aforementioned localized solutions and calculate the mean square errors in both SCTgNN and TgNN in predicting these three localized solutions. Our findings reveal that both models excel in understanding complex behaviours and provide predictions across a wide variety of situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrically constrained sine-Gordon field: BPS solitons and their collisions (In)stability of symbiotic vortex-bright soliton in holographic immiscible binary superfluids Chimera state in neural network with the PID coupling Pattern formation of bulk-surface reaction-diffusion systems in a ball Designing reaction-cross-diffusion systems with Turing and wave instabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1