Santhosh Nagaraja, Praveena Bindiganavile Anand, Madhusudhan Mariswamy, Meshel Q. Alkahtani, Saiful Islam, Mohammad Amir Khan, Wahaj Ahmad Khan, Javed Khan Bhutto
{"title":"用于航空航天的异种铝镁合金搅拌摩擦焊:前景和未来潜力","authors":"Santhosh Nagaraja, Praveena Bindiganavile Anand, Madhusudhan Mariswamy, Meshel Q. Alkahtani, Saiful Islam, Mohammad Amir Khan, Wahaj Ahmad Khan, Javed Khan Bhutto","doi":"10.1515/rams-2024-0033","DOIUrl":null,"url":null,"abstract":"Friction stir welding (FSW) is increasingly utilized in aerospace for welding dissimilar Al–Mg alloys without melting, overcoming fusion welding challenges. This summary highlights FSW’s key aspects for dissimilar Al–Mg alloys and its aerospace relevance. These alloys are widely used in aerospace due to their beneficial properties, but fusion welding faces issues like brittle intermetallic compounds (IMC) and decreased mechanical properties. FSW addresses these challenges by using a rotating tool to generate frictional heat, plasticizing the material for solid-state joining without melting. This reduces IMC formation, enhancing joint strength and mechanical properties. Critical parameters like rotational speed, traverse speed, tool design, and process variables are emphasized for optimal FSW of dissimilar Al–Mg alloys. Joining these alloys is crucial in aerospace for applications such as aircraft structures, engine components, and fuel tanks. FSW offers advantages like weight reduction, improved fuel efficiency, and structural integrity enhancement. It allows welding dissimilar Al–Mg alloys with varying compositions for tailored material combinations meeting specific needs. In conclusion, FSW of dissimilar aluminum alloys is promising for aerospace, creating defect-free joints with improved mechanical properties. However, further research is needed to optimize parameters, explore tool designs, and validate long-term performance in aerospace environments.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"52 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction stir welding of dissimilar Al–Mg alloys for aerospace applications: Prospects and future potential\",\"authors\":\"Santhosh Nagaraja, Praveena Bindiganavile Anand, Madhusudhan Mariswamy, Meshel Q. Alkahtani, Saiful Islam, Mohammad Amir Khan, Wahaj Ahmad Khan, Javed Khan Bhutto\",\"doi\":\"10.1515/rams-2024-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction stir welding (FSW) is increasingly utilized in aerospace for welding dissimilar Al–Mg alloys without melting, overcoming fusion welding challenges. This summary highlights FSW’s key aspects for dissimilar Al–Mg alloys and its aerospace relevance. These alloys are widely used in aerospace due to their beneficial properties, but fusion welding faces issues like brittle intermetallic compounds (IMC) and decreased mechanical properties. FSW addresses these challenges by using a rotating tool to generate frictional heat, plasticizing the material for solid-state joining without melting. This reduces IMC formation, enhancing joint strength and mechanical properties. Critical parameters like rotational speed, traverse speed, tool design, and process variables are emphasized for optimal FSW of dissimilar Al–Mg alloys. Joining these alloys is crucial in aerospace for applications such as aircraft structures, engine components, and fuel tanks. FSW offers advantages like weight reduction, improved fuel efficiency, and structural integrity enhancement. It allows welding dissimilar Al–Mg alloys with varying compositions for tailored material combinations meeting specific needs. In conclusion, FSW of dissimilar aluminum alloys is promising for aerospace, creating defect-free joints with improved mechanical properties. However, further research is needed to optimize parameters, explore tool designs, and validate long-term performance in aerospace environments.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2024-0033\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0033","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Friction stir welding of dissimilar Al–Mg alloys for aerospace applications: Prospects and future potential
Friction stir welding (FSW) is increasingly utilized in aerospace for welding dissimilar Al–Mg alloys without melting, overcoming fusion welding challenges. This summary highlights FSW’s key aspects for dissimilar Al–Mg alloys and its aerospace relevance. These alloys are widely used in aerospace due to their beneficial properties, but fusion welding faces issues like brittle intermetallic compounds (IMC) and decreased mechanical properties. FSW addresses these challenges by using a rotating tool to generate frictional heat, plasticizing the material for solid-state joining without melting. This reduces IMC formation, enhancing joint strength and mechanical properties. Critical parameters like rotational speed, traverse speed, tool design, and process variables are emphasized for optimal FSW of dissimilar Al–Mg alloys. Joining these alloys is crucial in aerospace for applications such as aircraft structures, engine components, and fuel tanks. FSW offers advantages like weight reduction, improved fuel efficiency, and structural integrity enhancement. It allows welding dissimilar Al–Mg alloys with varying compositions for tailored material combinations meeting specific needs. In conclusion, FSW of dissimilar aluminum alloys is promising for aerospace, creating defect-free joints with improved mechanical properties. However, further research is needed to optimize parameters, explore tool designs, and validate long-term performance in aerospace environments.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.