Ozan Bahadir, Jan Paul Siebert, Gerardo Aragon-Camarasa
{"title":"机器人手眼校准的持续学习方法","authors":"Ozan Bahadir, Jan Paul Siebert, Gerardo Aragon-Camarasa","doi":"10.1007/s00138-024-01572-w","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the problem of hand–eye calibration in robotic systems by developing Continual Learning (CL)-based approaches. Traditionally, robots require explicit models to transfer knowledge from camera observations to their hands or base. However, this poses limitations, as the hand–eye calibration parameters are typically valid only for the current camera configuration. We, therefore, propose a flexible and autonomous hand–eye calibration system that can adapt to changes in camera pose over time. Three CL-based approaches are introduced: the naive CL approach, the reservoir rehearsal approach, and the hybrid approach combining reservoir sampling with new data evaluation. The naive CL approach suffers from catastrophic forgetting, while the reservoir rehearsal approach mitigates this issue by sampling uniformly from past data. The hybrid approach further enhances performance by incorporating reservoir sampling and assessing new data for novelty. Experiments conducted in simulated and real-world environments demonstrate that the CL-based approaches, except for the naive approach, achieve competitive performance compared to traditional batch learning-based methods. This suggests that treating hand–eye calibration as a time sequence problem enables the extension of the learned space without complete retraining. The adaptability of the CL-based approaches facilitates accommodating changes in camera pose, leading to an improved hand–eye calibration system.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"41 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continual learning approaches to hand–eye calibration in robots\",\"authors\":\"Ozan Bahadir, Jan Paul Siebert, Gerardo Aragon-Camarasa\",\"doi\":\"10.1007/s00138-024-01572-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the problem of hand–eye calibration in robotic systems by developing Continual Learning (CL)-based approaches. Traditionally, robots require explicit models to transfer knowledge from camera observations to their hands or base. However, this poses limitations, as the hand–eye calibration parameters are typically valid only for the current camera configuration. We, therefore, propose a flexible and autonomous hand–eye calibration system that can adapt to changes in camera pose over time. Three CL-based approaches are introduced: the naive CL approach, the reservoir rehearsal approach, and the hybrid approach combining reservoir sampling with new data evaluation. The naive CL approach suffers from catastrophic forgetting, while the reservoir rehearsal approach mitigates this issue by sampling uniformly from past data. The hybrid approach further enhances performance by incorporating reservoir sampling and assessing new data for novelty. Experiments conducted in simulated and real-world environments demonstrate that the CL-based approaches, except for the naive approach, achieve competitive performance compared to traditional batch learning-based methods. This suggests that treating hand–eye calibration as a time sequence problem enables the extension of the learned space without complete retraining. The adaptability of the CL-based approaches facilitates accommodating changes in camera pose, leading to an improved hand–eye calibration system.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01572-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01572-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continual learning approaches to hand–eye calibration in robots
This study addresses the problem of hand–eye calibration in robotic systems by developing Continual Learning (CL)-based approaches. Traditionally, robots require explicit models to transfer knowledge from camera observations to their hands or base. However, this poses limitations, as the hand–eye calibration parameters are typically valid only for the current camera configuration. We, therefore, propose a flexible and autonomous hand–eye calibration system that can adapt to changes in camera pose over time. Three CL-based approaches are introduced: the naive CL approach, the reservoir rehearsal approach, and the hybrid approach combining reservoir sampling with new data evaluation. The naive CL approach suffers from catastrophic forgetting, while the reservoir rehearsal approach mitigates this issue by sampling uniformly from past data. The hybrid approach further enhances performance by incorporating reservoir sampling and assessing new data for novelty. Experiments conducted in simulated and real-world environments demonstrate that the CL-based approaches, except for the naive approach, achieve competitive performance compared to traditional batch learning-based methods. This suggests that treating hand–eye calibration as a time sequence problem enables the extension of the learned space without complete retraining. The adaptability of the CL-based approaches facilitates accommodating changes in camera pose, leading to an improved hand–eye calibration system.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.