与 XFEL 脉冲相互作用的氩气中电平群的演变:共振吸收的影响

IF 1.5 4区 物理与天体物理 Q3 OPTICS Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-07-10 DOI:10.1088/1361-6455/ad5ee5
Jie Yan, Guanpeng Yan, Fengtao Jin, Yongjun Li, Cheng Gao, Jiaolong Zeng and Jianmin Yuan
{"title":"与 XFEL 脉冲相互作用的氩气中电平群的演变:共振吸收的影响","authors":"Jie Yan, Guanpeng Yan, Fengtao Jin, Yongjun Li, Cheng Gao, Jiaolong Zeng and Jianmin Yuan","doi":"10.1088/1361-6455/ad5ee5","DOIUrl":null,"url":null,"abstract":"Theoretical exploration of the population dynamics at fine-structure levels of Ar atoms interacting with ultrafast ultraintense x-ray free electron laser (XFEL) pulses is conducted. A time-dependent rate equation based on a detailed-level accounting approach is applied for tracking population levels, encompassing microscopic atomic processes such as photoexcitation, radiative decay, photoionization and Auger decay. A Monte Carlo algorithm is implemented to solve large-scale rate equations efficiently. The primary investigation centers on generating Ar17+ through resonant absorption by the second-harmonic radiation of the x-ray pulse. The calculated population ratios of Ar17+ to Ar16+ align well with the experimental measurements (LaForge et al 2021 Phys. Rev. Lett.127 213202). In comparison to the transition energy of the strongest line, of Ar16+, there is a distinct ∼25 eV red shift in the peak ratio, which is attributed to the presence of intricate resonant channels in the lower ionization stages. The results demonstrate the sensitivity of the population ratio Ar17+/Ar16+ to the laser pulse parameters such as x-ray pulse duration, bandwidth and the contribution of second-harmonic radiation, indicating their potential as diagnostic tools in future experiments.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"21 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of level population in Ar interacting with XFEL pulses: impact of resonant absorptions\",\"authors\":\"Jie Yan, Guanpeng Yan, Fengtao Jin, Yongjun Li, Cheng Gao, Jiaolong Zeng and Jianmin Yuan\",\"doi\":\"10.1088/1361-6455/ad5ee5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical exploration of the population dynamics at fine-structure levels of Ar atoms interacting with ultrafast ultraintense x-ray free electron laser (XFEL) pulses is conducted. A time-dependent rate equation based on a detailed-level accounting approach is applied for tracking population levels, encompassing microscopic atomic processes such as photoexcitation, radiative decay, photoionization and Auger decay. A Monte Carlo algorithm is implemented to solve large-scale rate equations efficiently. The primary investigation centers on generating Ar17+ through resonant absorption by the second-harmonic radiation of the x-ray pulse. The calculated population ratios of Ar17+ to Ar16+ align well with the experimental measurements (LaForge et al 2021 Phys. Rev. Lett.127 213202). In comparison to the transition energy of the strongest line, of Ar16+, there is a distinct ∼25 eV red shift in the peak ratio, which is attributed to the presence of intricate resonant channels in the lower ionization stages. The results demonstrate the sensitivity of the population ratio Ar17+/Ar16+ to the laser pulse parameters such as x-ray pulse duration, bandwidth and the contribution of second-harmonic radiation, indicating their potential as diagnostic tools in future experiments.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad5ee5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad5ee5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

对与超快超约束 X 射线自由电子激光(XFEL)脉冲相互作用的氩原子精细结构水平的种群动态进行了理论探索。基于细节级核算方法的随时间变化的速率方程被用于跟踪种群水平,包括光激发、辐射衰变、光离子化和奥格衰变等微观原子过程。采用蒙特卡洛算法有效求解大规模速率方程。主要研究集中在通过 X 射线脉冲二次谐波辐射的共振吸收产生 Ar17+。计算得出的 Ar17+ 与 Ar16+ 的种群比与实验测量结果(LaForge 等人,2021 年,Phys. Rev. Lett.127 213202)非常吻合。与 Ar16+ 的最强线的过渡能量相比,峰值比有明显的 ∼25 eV 红移,这归因于在较低的电离阶段存在错综复杂的共振通道。结果表明了 Ar17+/Ar16+ 的种群比对激光脉冲参数(如 X 射线脉冲持续时间、带宽和二次谐波辐射的贡献)的敏感性,表明它们在未来实验中作为诊断工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of level population in Ar interacting with XFEL pulses: impact of resonant absorptions
Theoretical exploration of the population dynamics at fine-structure levels of Ar atoms interacting with ultrafast ultraintense x-ray free electron laser (XFEL) pulses is conducted. A time-dependent rate equation based on a detailed-level accounting approach is applied for tracking population levels, encompassing microscopic atomic processes such as photoexcitation, radiative decay, photoionization and Auger decay. A Monte Carlo algorithm is implemented to solve large-scale rate equations efficiently. The primary investigation centers on generating Ar17+ through resonant absorption by the second-harmonic radiation of the x-ray pulse. The calculated population ratios of Ar17+ to Ar16+ align well with the experimental measurements (LaForge et al 2021 Phys. Rev. Lett.127 213202). In comparison to the transition energy of the strongest line, of Ar16+, there is a distinct ∼25 eV red shift in the peak ratio, which is attributed to the presence of intricate resonant channels in the lower ionization stages. The results demonstrate the sensitivity of the population ratio Ar17+/Ar16+ to the laser pulse parameters such as x-ray pulse duration, bandwidth and the contribution of second-harmonic radiation, indicating their potential as diagnostic tools in future experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
期刊最新文献
X-ray circular dichroism measured by cross-polarization x-ray transient grating Toward a Mølmer Sørensen gate with .9999 fidelity Quantum states and spectra of small cylindrical and toroidal lattices Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001) Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1