Jingjing Gu, Guoqiang Zhang, Jiahao Chang, Lei Zhang, Zhongtao Wu, Xiliang Luo and Hao Wang
{"title":"偶氮苯的聚集诱导发射,用于灵敏显示纤维素材料的自组装情况","authors":"Jingjing Gu, Guoqiang Zhang, Jiahao Chang, Lei Zhang, Zhongtao Wu, Xiliang Luo and Hao Wang","doi":"10.1039/D4QM00542B","DOIUrl":null,"url":null,"abstract":"<p >Azobenzene is one of the most commonly used photochromic molecules, but is rarely used as a fluorescence probe in materials chemistry, due to its efficient photoisomerization providing competition for consumption of light energy. In this study, an azobenzene-containing ammonium surfactant was designed for fabricating an ionic cellulose material through an electrostatic complexation with carboxymethyl cellulose. Based on the AIE effect of the azobenzene motif, the cellulose material exhibited fluorescence. Furthermore, in aqueous conditions, the self-assembly of this cellulose material could be well regulated by effecting azobenzene isomerization under UV/Vis irradiation, which resulted in a remarkable change in the fluorescence intensity. As compared to the commonly used UV-Vis absorption, the fluorescence change of azobenzene was found to provide a more sensitive indication for tracking the dissolution and precipitation of the ionic cellulose-surfactant assemblies in aqueous conditions. This work has provided a useful strategy for fabricating photoresponsive fluorescent biomaterials based on azobenzene, opening a new opportunity for detecting drug-loading materials.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 18","pages":" 3047-3052"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation-induced emission of azobenzene towards a sensitive indication on the self-assembly of a cellulose material†\",\"authors\":\"Jingjing Gu, Guoqiang Zhang, Jiahao Chang, Lei Zhang, Zhongtao Wu, Xiliang Luo and Hao Wang\",\"doi\":\"10.1039/D4QM00542B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Azobenzene is one of the most commonly used photochromic molecules, but is rarely used as a fluorescence probe in materials chemistry, due to its efficient photoisomerization providing competition for consumption of light energy. In this study, an azobenzene-containing ammonium surfactant was designed for fabricating an ionic cellulose material through an electrostatic complexation with carboxymethyl cellulose. Based on the AIE effect of the azobenzene motif, the cellulose material exhibited fluorescence. Furthermore, in aqueous conditions, the self-assembly of this cellulose material could be well regulated by effecting azobenzene isomerization under UV/Vis irradiation, which resulted in a remarkable change in the fluorescence intensity. As compared to the commonly used UV-Vis absorption, the fluorescence change of azobenzene was found to provide a more sensitive indication for tracking the dissolution and precipitation of the ionic cellulose-surfactant assemblies in aqueous conditions. This work has provided a useful strategy for fabricating photoresponsive fluorescent biomaterials based on azobenzene, opening a new opportunity for detecting drug-loading materials.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 18\",\"pages\":\" 3047-3052\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00542b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00542b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aggregation-induced emission of azobenzene towards a sensitive indication on the self-assembly of a cellulose material†
Azobenzene is one of the most commonly used photochromic molecules, but is rarely used as a fluorescence probe in materials chemistry, due to its efficient photoisomerization providing competition for consumption of light energy. In this study, an azobenzene-containing ammonium surfactant was designed for fabricating an ionic cellulose material through an electrostatic complexation with carboxymethyl cellulose. Based on the AIE effect of the azobenzene motif, the cellulose material exhibited fluorescence. Furthermore, in aqueous conditions, the self-assembly of this cellulose material could be well regulated by effecting azobenzene isomerization under UV/Vis irradiation, which resulted in a remarkable change in the fluorescence intensity. As compared to the commonly used UV-Vis absorption, the fluorescence change of azobenzene was found to provide a more sensitive indication for tracking the dissolution and precipitation of the ionic cellulose-surfactant assemblies in aqueous conditions. This work has provided a useful strategy for fabricating photoresponsive fluorescent biomaterials based on azobenzene, opening a new opportunity for detecting drug-loading materials.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.