Nick Wulbusch, Reinhild Roden, Matthias Blau, Alexey Chernov
{"title":"亥姆霍兹问题阻抗边界条件中的贝叶斯参数识别","authors":"Nick Wulbusch, Reinhild Roden, Matthias Blau, Alexey Chernov","doi":"10.1137/23m1591517","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B422-B447, August 2024. <br/> Abstract. We consider the problem of identifying the acoustic impedance of a wall surface from noisy pressure measurements in a closed room using a Bayesian approach. The room acoustics are modeled by the interior Helmholtz equation with impedance boundary conditions. The aim is to compute moments of the acoustic impedance to estimate a suitable density function of the impedance coefficient. For the computation of moments we use ratio estimators and Monte Carlo sampling. We consider two different experimental scenarios. In the first scenario, the noisy measurements correspond to a wall modeled by impedance boundary conditions. In this case, the Bayesian algorithm uses a model that is (up to the noise) consistent with the measurements and our algorithm is able to identify acoustic impedance with high accuracy. In the second scenario, the noisy measurements come from a coupled acoustic-structural problem, modeling a wall made of glass, whereas the Bayesian algorithm still uses a model with impedance boundary conditions. In this case, the parameter identification model is inconsistent with the measurements and therefore is not capable to represent them well. Nonetheless, for particular frequency bands the Bayesian algorithm identifies estimates with high likelihood. Outside these frequency bands the algorithm fails. We discuss the results of both examples and possible reasons for the failure of the latter case for particular frequency values.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Parameter Identification in Impedance Boundary Conditions for Helmholtz Problems\",\"authors\":\"Nick Wulbusch, Reinhild Roden, Matthias Blau, Alexey Chernov\",\"doi\":\"10.1137/23m1591517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B422-B447, August 2024. <br/> Abstract. We consider the problem of identifying the acoustic impedance of a wall surface from noisy pressure measurements in a closed room using a Bayesian approach. The room acoustics are modeled by the interior Helmholtz equation with impedance boundary conditions. The aim is to compute moments of the acoustic impedance to estimate a suitable density function of the impedance coefficient. For the computation of moments we use ratio estimators and Monte Carlo sampling. We consider two different experimental scenarios. In the first scenario, the noisy measurements correspond to a wall modeled by impedance boundary conditions. In this case, the Bayesian algorithm uses a model that is (up to the noise) consistent with the measurements and our algorithm is able to identify acoustic impedance with high accuracy. In the second scenario, the noisy measurements come from a coupled acoustic-structural problem, modeling a wall made of glass, whereas the Bayesian algorithm still uses a model with impedance boundary conditions. In this case, the parameter identification model is inconsistent with the measurements and therefore is not capable to represent them well. Nonetheless, for particular frequency bands the Bayesian algorithm identifies estimates with high likelihood. Outside these frequency bands the algorithm fails. We discuss the results of both examples and possible reasons for the failure of the latter case for particular frequency values.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1591517\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1591517","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Bayesian Parameter Identification in Impedance Boundary Conditions for Helmholtz Problems
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B422-B447, August 2024. Abstract. We consider the problem of identifying the acoustic impedance of a wall surface from noisy pressure measurements in a closed room using a Bayesian approach. The room acoustics are modeled by the interior Helmholtz equation with impedance boundary conditions. The aim is to compute moments of the acoustic impedance to estimate a suitable density function of the impedance coefficient. For the computation of moments we use ratio estimators and Monte Carlo sampling. We consider two different experimental scenarios. In the first scenario, the noisy measurements correspond to a wall modeled by impedance boundary conditions. In this case, the Bayesian algorithm uses a model that is (up to the noise) consistent with the measurements and our algorithm is able to identify acoustic impedance with high accuracy. In the second scenario, the noisy measurements come from a coupled acoustic-structural problem, modeling a wall made of glass, whereas the Bayesian algorithm still uses a model with impedance boundary conditions. In this case, the parameter identification model is inconsistent with the measurements and therefore is not capable to represent them well. Nonetheless, for particular frequency bands the Bayesian algorithm identifies estimates with high likelihood. Outside these frequency bands the algorithm fails. We discuss the results of both examples and possible reasons for the failure of the latter case for particular frequency values.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.