Walter Boscheri, Michael Dumbser, Pierre-Henri Maire
{"title":"用于拉格朗日气体动力学的新型热力学兼容有限体积方案","authors":"Walter Boscheri, Michael Dumbser, Pierre-Henri Maire","doi":"10.1137/23m1580863","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2224-A2247, August 2024. <br/> Abstract. The equations of Lagrangian gas dynamics fall into the larger class of overdetermined hyperbolic and thermodynamically compatible (HTC) systems of partial differential equations. They satisfy an entropy inequality (second principle of thermodynamics) and conserve total energy (first principle of thermodynamics). The aim of this work is to construct a novel thermodynamically compatible cell-centered Lagrangian finite volume scheme on unstructured meshes. Unlike in existing schemes, we choose to directly discretize the entropy inequality, hence obtaining total energy conservation as a consequence of the new thermodynamically compatible discretization of the other equations. First, the governing equations are written in fluctuation form. Next, the noncompatible centered numerical fluxes are corrected according to the approach recently introduced by Abgrall et al. using a scalar correction factor that is defined at the nodes of the grid. This perfectly fits into the formalism of nodal solvers which is typically adopted in cell-centered Lagrangian finite volume methods. Semidiscrete entropy conservative and entropy stable Lagrangian schemes are devised, and they are adequately blended together via a convex combination based on either a priori or a posteriori detectors of discontinuous solutions. The nonlinear stability in the energy norm is rigorously demonstrated, and the new schemes are provably positivity preserving for density and pressure. Furthermore, they exhibit zero numerical diffusion for isentropic flows while still being nonlinearly stable. The new schemes are tested against classical benchmarks for Lagrangian hydrodynamics, assessing their convergence and robustness and comparing their numerical dissipation with classical Lagrangian finite volume methods.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"49 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Thermodynamically Compatible Finite Volume Scheme for Lagrangian Gas Dynamics\",\"authors\":\"Walter Boscheri, Michael Dumbser, Pierre-Henri Maire\",\"doi\":\"10.1137/23m1580863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2224-A2247, August 2024. <br/> Abstract. The equations of Lagrangian gas dynamics fall into the larger class of overdetermined hyperbolic and thermodynamically compatible (HTC) systems of partial differential equations. They satisfy an entropy inequality (second principle of thermodynamics) and conserve total energy (first principle of thermodynamics). The aim of this work is to construct a novel thermodynamically compatible cell-centered Lagrangian finite volume scheme on unstructured meshes. Unlike in existing schemes, we choose to directly discretize the entropy inequality, hence obtaining total energy conservation as a consequence of the new thermodynamically compatible discretization of the other equations. First, the governing equations are written in fluctuation form. Next, the noncompatible centered numerical fluxes are corrected according to the approach recently introduced by Abgrall et al. using a scalar correction factor that is defined at the nodes of the grid. This perfectly fits into the formalism of nodal solvers which is typically adopted in cell-centered Lagrangian finite volume methods. Semidiscrete entropy conservative and entropy stable Lagrangian schemes are devised, and they are adequately blended together via a convex combination based on either a priori or a posteriori detectors of discontinuous solutions. The nonlinear stability in the energy norm is rigorously demonstrated, and the new schemes are provably positivity preserving for density and pressure. Furthermore, they exhibit zero numerical diffusion for isentropic flows while still being nonlinearly stable. The new schemes are tested against classical benchmarks for Lagrangian hydrodynamics, assessing their convergence and robustness and comparing their numerical dissipation with classical Lagrangian finite volume methods.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1580863\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1580863","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A New Thermodynamically Compatible Finite Volume Scheme for Lagrangian Gas Dynamics
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2224-A2247, August 2024. Abstract. The equations of Lagrangian gas dynamics fall into the larger class of overdetermined hyperbolic and thermodynamically compatible (HTC) systems of partial differential equations. They satisfy an entropy inequality (second principle of thermodynamics) and conserve total energy (first principle of thermodynamics). The aim of this work is to construct a novel thermodynamically compatible cell-centered Lagrangian finite volume scheme on unstructured meshes. Unlike in existing schemes, we choose to directly discretize the entropy inequality, hence obtaining total energy conservation as a consequence of the new thermodynamically compatible discretization of the other equations. First, the governing equations are written in fluctuation form. Next, the noncompatible centered numerical fluxes are corrected according to the approach recently introduced by Abgrall et al. using a scalar correction factor that is defined at the nodes of the grid. This perfectly fits into the formalism of nodal solvers which is typically adopted in cell-centered Lagrangian finite volume methods. Semidiscrete entropy conservative and entropy stable Lagrangian schemes are devised, and they are adequately blended together via a convex combination based on either a priori or a posteriori detectors of discontinuous solutions. The nonlinear stability in the energy norm is rigorously demonstrated, and the new schemes are provably positivity preserving for density and pressure. Furthermore, they exhibit zero numerical diffusion for isentropic flows while still being nonlinearly stable. The new schemes are tested against classical benchmarks for Lagrangian hydrodynamics, assessing their convergence and robustness and comparing their numerical dissipation with classical Lagrangian finite volume methods.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.