关于分阶段反向传播改进全连接级联网络的程氏方法

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-07-11 DOI:10.1007/s11063-024-11655-4
Eiji Mizutani, Naoyuki Kubota, Tam Chi Truong
{"title":"关于分阶段反向传播改进全连接级联网络的程氏方法","authors":"Eiji Mizutani, Naoyuki Kubota, Tam Chi Truong","doi":"10.1007/s11063-024-11655-4","DOIUrl":null,"url":null,"abstract":"<p>In this journal, Cheng has proposed a <i>backpropagation</i> (<i>BP</i>) procedure called BPFCC for deep <i>fully connected cascaded</i> (<i>FCC</i>) neural network learning in comparison with a <i>neuron-by-neuron</i> (NBN) algorithm of Wilamowski and Yu. Both BPFCC and NBN are designed to implement the Levenberg-Marquardt method, which requires an efficient evaluation of the Gauss-Newton (approximate Hessian) matrix <span>\\(\\nabla \\textbf{r}^\\textsf{T} \\nabla \\textbf{r}\\)</span>, the cross product of the Jacobian matrix <span>\\(\\nabla \\textbf{r}\\)</span> of the residual vector <span>\\(\\textbf{r}\\)</span> in <i>nonlinear least squares sense</i>. Here, the dominant cost is to form <span>\\(\\nabla \\textbf{r}^\\textsf{T} \\nabla \\textbf{r}\\)</span> by <i>rank updates on each data pattern</i>. Notably, NBN is better than BPFCC for the multiple <span>\\(q~\\!(&gt;\\!1)\\)</span>-output FCC-learning when <i>q</i> rows (per pattern) of the Jacobian matrix <span>\\(\\nabla \\textbf{r}\\)</span> are evaluated; however, the dominant cost (for rank updates) is common to both BPFCC and NBN. The purpose of this paper is to present a new more efficient <i>stage-wise BP</i> procedure (for <i>q</i>-output FCC-learning) that <i>reduces the dominant cost</i> with no rows of <span>\\(\\nabla \\textbf{r}\\)</span> explicitly evaluated, just as standard BP evaluates the gradient vector <span>\\(\\nabla \\textbf{r}^\\textsf{T} \\textbf{r}\\)</span> with no explicit evaluation of any rows of the Jacobian matrix <span>\\(\\nabla \\textbf{r}\\)</span>.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"64 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Stage-Wise Backpropagation for Improving Cheng’s Method for Fully Connected Cascade Networks\",\"authors\":\"Eiji Mizutani, Naoyuki Kubota, Tam Chi Truong\",\"doi\":\"10.1007/s11063-024-11655-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this journal, Cheng has proposed a <i>backpropagation</i> (<i>BP</i>) procedure called BPFCC for deep <i>fully connected cascaded</i> (<i>FCC</i>) neural network learning in comparison with a <i>neuron-by-neuron</i> (NBN) algorithm of Wilamowski and Yu. Both BPFCC and NBN are designed to implement the Levenberg-Marquardt method, which requires an efficient evaluation of the Gauss-Newton (approximate Hessian) matrix <span>\\\\(\\\\nabla \\\\textbf{r}^\\\\textsf{T} \\\\nabla \\\\textbf{r}\\\\)</span>, the cross product of the Jacobian matrix <span>\\\\(\\\\nabla \\\\textbf{r}\\\\)</span> of the residual vector <span>\\\\(\\\\textbf{r}\\\\)</span> in <i>nonlinear least squares sense</i>. Here, the dominant cost is to form <span>\\\\(\\\\nabla \\\\textbf{r}^\\\\textsf{T} \\\\nabla \\\\textbf{r}\\\\)</span> by <i>rank updates on each data pattern</i>. Notably, NBN is better than BPFCC for the multiple <span>\\\\(q~\\\\!(&gt;\\\\!1)\\\\)</span>-output FCC-learning when <i>q</i> rows (per pattern) of the Jacobian matrix <span>\\\\(\\\\nabla \\\\textbf{r}\\\\)</span> are evaluated; however, the dominant cost (for rank updates) is common to both BPFCC and NBN. The purpose of this paper is to present a new more efficient <i>stage-wise BP</i> procedure (for <i>q</i>-output FCC-learning) that <i>reduces the dominant cost</i> with no rows of <span>\\\\(\\\\nabla \\\\textbf{r}\\\\)</span> explicitly evaluated, just as standard BP evaluates the gradient vector <span>\\\\(\\\\nabla \\\\textbf{r}^\\\\textsf{T} \\\\textbf{r}\\\\)</span> with no explicit evaluation of any rows of the Jacobian matrix <span>\\\\(\\\\nabla \\\\textbf{r}\\\\)</span>.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11655-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11655-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这本期刊中,Cheng 提出了一种名为 BPFCC 的反向传播(BP)程序,用于深度全连接级联(FCC)神经网络学习,并与 Wilamowski 和 Yu 的逐神经元(NBN)算法进行了比较。BPFCC 和 NBN 算法都是为实现 Levenberg-Marquardt 方法而设计的,该方法要求高效评估高斯-牛顿(近似 Hessian)矩阵 \(\nabla \textbf{r}^\textsf{T} \nabla \textbf{r}\), 即非线性最小二乘法意义上残差向量 \(\textbf{r}\) 的雅各布矩阵 \(\nabla \textbf{r}\) 的交叉积。在这里,主要的代价是通过对每个数据模式的秩更新来形成 \(\nabla \textbf{r}^\textsf{T} \nabla \textbf{r}\)。值得注意的是,当评估 Jacobian 矩阵 \(\nabla \textbf{r}\)的 q 行(每个模式)时,NBN 在多行(q~\!本文的目的是提出一种新的更高效的分阶段 BP 程序(用于 q 输出 FCC 学习),它可以在不明确评估 \(\nabla \textbf{r}\) 的任何行的情况下降低主导成本,就像标准 BP 评估梯度向量 \(\nabla \textbf{r}^\textsf{T} \textbf{r}\)一样,不明确评估雅各布矩阵 \(\nabla \textbf{r}\) 的任何行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Stage-Wise Backpropagation for Improving Cheng’s Method for Fully Connected Cascade Networks

In this journal, Cheng has proposed a backpropagation (BP) procedure called BPFCC for deep fully connected cascaded (FCC) neural network learning in comparison with a neuron-by-neuron (NBN) algorithm of Wilamowski and Yu. Both BPFCC and NBN are designed to implement the Levenberg-Marquardt method, which requires an efficient evaluation of the Gauss-Newton (approximate Hessian) matrix \(\nabla \textbf{r}^\textsf{T} \nabla \textbf{r}\), the cross product of the Jacobian matrix \(\nabla \textbf{r}\) of the residual vector \(\textbf{r}\) in nonlinear least squares sense. Here, the dominant cost is to form \(\nabla \textbf{r}^\textsf{T} \nabla \textbf{r}\) by rank updates on each data pattern. Notably, NBN is better than BPFCC for the multiple \(q~\!(>\!1)\)-output FCC-learning when q rows (per pattern) of the Jacobian matrix \(\nabla \textbf{r}\) are evaluated; however, the dominant cost (for rank updates) is common to both BPFCC and NBN. The purpose of this paper is to present a new more efficient stage-wise BP procedure (for q-output FCC-learning) that reduces the dominant cost with no rows of \(\nabla \textbf{r}\) explicitly evaluated, just as standard BP evaluates the gradient vector \(\nabla \textbf{r}^\textsf{T} \textbf{r}\) with no explicit evaluation of any rows of the Jacobian matrix \(\nabla \textbf{r}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1