{"title":"用于电化学储能应用的原位铁改性介孔二氧化硅 MCM-48","authors":"Arnab Kalita, Trishanku Kashyap, Pranjal Saikia, Anup Kumar Talukdar","doi":"10.1007/s10934-024-01657-x","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical energy technologies are crucial for a sustainable future, promising to transform energy generation, storage and use with improved efficiency and environmental responsibility. In this study, Fe was integrated into the MCM-48 framework to create a modified mesoporous structure to be used as electrodes for electrochemical storage applications. The materials were thoroughly characterized using various spectroscopic and non-spectroscopic techniques, including XRD, XPS, UV-Vis (DRS), FT-IR, N<sub>2</sub> adsorption-desorption analysis, SEM with EDX, ICP-OES, TEM, TGA and DSC. Cyclic voltammetry and galvanometric charge-discharge studies revealed that the Fe-MCM-48 sample with Si: Fe molar ratio of 20 (Fe-MCM-48 (20)) exhibited pseudocapacitive behaviour, showcasing higher capacitance value of up to 787 F g<sup>− 1</sup> at a current density of 1 A g<sup>− 1</sup>. The findings undeniably indicate that Fe-MCM-48 (20) holds promise as a highly effective electrode material for advancing energy storage technologies like supercapacitors.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 6","pages":"2067 - 2082"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01657-x.pdf","citationCount":"0","resultStr":"{\"title\":\"In-situ iron modified mesoporous silica MCM-48 for electrochemical energy storage applications\",\"authors\":\"Arnab Kalita, Trishanku Kashyap, Pranjal Saikia, Anup Kumar Talukdar\",\"doi\":\"10.1007/s10934-024-01657-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical energy technologies are crucial for a sustainable future, promising to transform energy generation, storage and use with improved efficiency and environmental responsibility. In this study, Fe was integrated into the MCM-48 framework to create a modified mesoporous structure to be used as electrodes for electrochemical storage applications. The materials were thoroughly characterized using various spectroscopic and non-spectroscopic techniques, including XRD, XPS, UV-Vis (DRS), FT-IR, N<sub>2</sub> adsorption-desorption analysis, SEM with EDX, ICP-OES, TEM, TGA and DSC. Cyclic voltammetry and galvanometric charge-discharge studies revealed that the Fe-MCM-48 sample with Si: Fe molar ratio of 20 (Fe-MCM-48 (20)) exhibited pseudocapacitive behaviour, showcasing higher capacitance value of up to 787 F g<sup>− 1</sup> at a current density of 1 A g<sup>− 1</sup>. The findings undeniably indicate that Fe-MCM-48 (20) holds promise as a highly effective electrode material for advancing energy storage technologies like supercapacitors.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 6\",\"pages\":\"2067 - 2082\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10934-024-01657-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01657-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01657-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
In-situ iron modified mesoporous silica MCM-48 for electrochemical energy storage applications
Electrochemical energy technologies are crucial for a sustainable future, promising to transform energy generation, storage and use with improved efficiency and environmental responsibility. In this study, Fe was integrated into the MCM-48 framework to create a modified mesoporous structure to be used as electrodes for electrochemical storage applications. The materials were thoroughly characterized using various spectroscopic and non-spectroscopic techniques, including XRD, XPS, UV-Vis (DRS), FT-IR, N2 adsorption-desorption analysis, SEM with EDX, ICP-OES, TEM, TGA and DSC. Cyclic voltammetry and galvanometric charge-discharge studies revealed that the Fe-MCM-48 sample with Si: Fe molar ratio of 20 (Fe-MCM-48 (20)) exhibited pseudocapacitive behaviour, showcasing higher capacitance value of up to 787 F g− 1 at a current density of 1 A g− 1. The findings undeniably indicate that Fe-MCM-48 (20) holds promise as a highly effective electrode material for advancing energy storage technologies like supercapacitors.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.