针对稀释伊辛模型的非常有效而简单的扩散重构

Stefano Bae, Enzo Marinari, Federico Ricci-Tersenghi
{"title":"针对稀释伊辛模型的非常有效而简单的扩散重构","authors":"Stefano Bae, Enzo Marinari, Federico Ricci-Tersenghi","doi":"arxiv-2407.07266","DOIUrl":null,"url":null,"abstract":"Diffusion-based generative models are machine learning models that use\ndiffusion processes to learn the probability distribution of high-dimensional\ndata. In recent years, they have become extremely successful in generating\nmultimedia content. However, it is still unknown if such models can be used to\ngenerate high-quality datasets of physical models. In this work, we use a\nLandau-Ginzburg-like diffusion model to infer the distribution of a $2D$\nbond-diluted Ising model. Our approach is simple and effective, and we show\nthat the generated samples reproduce correctly the statistical and critical\nproperties of the physical model.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"152 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Very Effective and Simple Diffusion Reconstruction for the Diluted Ising Model\",\"authors\":\"Stefano Bae, Enzo Marinari, Federico Ricci-Tersenghi\",\"doi\":\"arxiv-2407.07266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion-based generative models are machine learning models that use\\ndiffusion processes to learn the probability distribution of high-dimensional\\ndata. In recent years, they have become extremely successful in generating\\nmultimedia content. However, it is still unknown if such models can be used to\\ngenerate high-quality datasets of physical models. In this work, we use a\\nLandau-Ginzburg-like diffusion model to infer the distribution of a $2D$\\nbond-diluted Ising model. Our approach is simple and effective, and we show\\nthat the generated samples reproduce correctly the statistical and critical\\nproperties of the physical model.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于扩散的生成模型是一种使用扩散过程来学习高维数据概率分布的机器学习模型。近年来,它们在生成多媒体内容方面取得了巨大成功。然而,这种模型能否用于生成高质量的物理模型数据集,目前还不得而知。在这项工作中,我们使用类似兰道-金兹堡的扩散模型来推断一个 2D 美元债券稀释伊辛模型的分布。我们的方法简单而有效,并证明生成的样本正确再现了物理模型的统计和临界特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Very Effective and Simple Diffusion Reconstruction for the Diluted Ising Model
Diffusion-based generative models are machine learning models that use diffusion processes to learn the probability distribution of high-dimensional data. In recent years, they have become extremely successful in generating multimedia content. However, it is still unknown if such models can be used to generate high-quality datasets of physical models. In this work, we use a Landau-Ginzburg-like diffusion model to infer the distribution of a $2D$ bond-diluted Ising model. Our approach is simple and effective, and we show that the generated samples reproduce correctly the statistical and critical properties of the physical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1