求助PDF
{"title":"掺杂聚乙二醇接枝氧化石墨烯的 Nafion 致动器的机电性能得到增强","authors":"Li Ma, Xiaowei Guo, Longxiang Mei, Lehui Wang, Yanghai Gui, Dongjie Guo","doi":"10.1002/pi.6674","DOIUrl":null,"url":null,"abstract":"<p>Current ionic polymer–metal composite (IPMC) actuators have severe actuation drawbacks (i.e. low force output and poor stability), hampering their applications. To address these issues, poly(ethylene glycol)-grafted graphene oxide (PEG-GO) is synthesized and incorporated into a Nafion matrix, thus producing a PEG-GO hybrid Nafion film with better physiochemical properties for fabricating a high-performance, low-cost IPMC actuator. The modification of PEG to GO not only prevents GO agglomeration and sedimentation, but also avoids loss of PEG in water. Driven by a 0.2 Hz, 2.5 V electric field, the hybrid IPMC actuator exhibits superior electromechanical behaviors, i.e. a swing angle of 110.3°, a blocking force of 6.89 mN and a stable working time of 485 s, respectively increasing by 92%, 209% and 294% when compared to a pure Nafion actuator. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 11","pages":"951-958"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced electromechanical performance of Nafion actuator doped by poly(ethylene glycol)-grafted graphene oxide\",\"authors\":\"Li Ma, Xiaowei Guo, Longxiang Mei, Lehui Wang, Yanghai Gui, Dongjie Guo\",\"doi\":\"10.1002/pi.6674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current ionic polymer–metal composite (IPMC) actuators have severe actuation drawbacks (i.e. low force output and poor stability), hampering their applications. To address these issues, poly(ethylene glycol)-grafted graphene oxide (PEG-GO) is synthesized and incorporated into a Nafion matrix, thus producing a PEG-GO hybrid Nafion film with better physiochemical properties for fabricating a high-performance, low-cost IPMC actuator. The modification of PEG to GO not only prevents GO agglomeration and sedimentation, but also avoids loss of PEG in water. Driven by a 0.2 Hz, 2.5 V electric field, the hybrid IPMC actuator exhibits superior electromechanical behaviors, i.e. a swing angle of 110.3°, a blocking force of 6.89 mN and a stable working time of 485 s, respectively increasing by 92%, 209% and 294% when compared to a pure Nafion actuator. © 2024 Society of Chemical Industry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 11\",\"pages\":\"951-958\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6674\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6674","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用