Yue Wang, Yong Yang, Mingsheng Liu, Xianghong Tang, Haibin Wang, Zhifeng Hao, Ze Shi, Gang Wang, Botao Jiang, Chunyang Liu
{"title":"通过快速去噪扩散隐含模型检测工业产品表面缺陷","authors":"Yue Wang, Yong Yang, Mingsheng Liu, Xianghong Tang, Haibin Wang, Zhifeng Hao, Ze Shi, Gang Wang, Botao Jiang, Chunyang Liu","doi":"10.1007/s13042-024-02213-4","DOIUrl":null,"url":null,"abstract":"<p>In the age of intelligent manufacturing, surface defect detection plays a pivotal role in the automated quality control of industrial products, constituting a fundamental aspect of smart factory evolution. Considering the diverse sizes and feature scales of surface defects on industrial products and the difficulty in procuring high-quality training samples, the achievement of real-time and high-quality surface defect detection through artificial intelligence technologies remains a formidable challenge. To address this, we introduce a defect detection approach grounded in the Fast Denoising Probabilistic Implicit Models. Firstly, we propose a noise predictor influenced by the spectral radius feature tensor of images. This enhancement augments the ability of generative model to capture nuanced details in non-defective areas, thus overcoming limitations in model versatility and detail portrayal. Furthermore, we present a loss function constraint based on the Perron-root. This is designed to incorporate the constraint within the representational space, ensuring the denoising model consistently produces high-quality samples. Lastly, comprehensive experiments on both the Magnetic Tile and Market-PCB datasets, benchmarked against nine most representative models, underscore the exemplary detection efficacy of our proposed approach.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial product surface defect detection via the fast denoising diffusion implicit model\",\"authors\":\"Yue Wang, Yong Yang, Mingsheng Liu, Xianghong Tang, Haibin Wang, Zhifeng Hao, Ze Shi, Gang Wang, Botao Jiang, Chunyang Liu\",\"doi\":\"10.1007/s13042-024-02213-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the age of intelligent manufacturing, surface defect detection plays a pivotal role in the automated quality control of industrial products, constituting a fundamental aspect of smart factory evolution. Considering the diverse sizes and feature scales of surface defects on industrial products and the difficulty in procuring high-quality training samples, the achievement of real-time and high-quality surface defect detection through artificial intelligence technologies remains a formidable challenge. To address this, we introduce a defect detection approach grounded in the Fast Denoising Probabilistic Implicit Models. Firstly, we propose a noise predictor influenced by the spectral radius feature tensor of images. This enhancement augments the ability of generative model to capture nuanced details in non-defective areas, thus overcoming limitations in model versatility and detail portrayal. Furthermore, we present a loss function constraint based on the Perron-root. This is designed to incorporate the constraint within the representational space, ensuring the denoising model consistently produces high-quality samples. Lastly, comprehensive experiments on both the Magnetic Tile and Market-PCB datasets, benchmarked against nine most representative models, underscore the exemplary detection efficacy of our proposed approach.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02213-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02213-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Industrial product surface defect detection via the fast denoising diffusion implicit model
In the age of intelligent manufacturing, surface defect detection plays a pivotal role in the automated quality control of industrial products, constituting a fundamental aspect of smart factory evolution. Considering the diverse sizes and feature scales of surface defects on industrial products and the difficulty in procuring high-quality training samples, the achievement of real-time and high-quality surface defect detection through artificial intelligence technologies remains a formidable challenge. To address this, we introduce a defect detection approach grounded in the Fast Denoising Probabilistic Implicit Models. Firstly, we propose a noise predictor influenced by the spectral radius feature tensor of images. This enhancement augments the ability of generative model to capture nuanced details in non-defective areas, thus overcoming limitations in model versatility and detail portrayal. Furthermore, we present a loss function constraint based on the Perron-root. This is designed to incorporate the constraint within the representational space, ensuring the denoising model consistently produces high-quality samples. Lastly, comprehensive experiments on both the Magnetic Tile and Market-PCB datasets, benchmarked against nine most representative models, underscore the exemplary detection efficacy of our proposed approach.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems