在 ICON 模型中实施和测试 NLT3D 方案

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-07-10 DOI:10.1002/qj.4789
V. Kuell, A. Bott
{"title":"在 ICON 模型中实施和测试 NLT3D 方案","authors":"V. Kuell, A. Bott","doi":"10.1002/qj.4789","DOIUrl":null,"url":null,"abstract":"The main goal of this article is to test the long‐term performance of the three‐dimensional non‐local turbulence (NLT) parameterization scheme at different grid sizes in the so‐called gray zone between classical mesoscale modeling ( several km) and large eddy simulations (LES: several 100 m). For this, NLT has been implemented in the numerical weather prediction Icosahedral Nonhydrostatic model (ICON) of Deutscher Wetterdienst (DWD). Results are compared with a one‐dimensional version of NLT (NLT) and with two operational turbulence schemes available in ICON. Comparisons with observations from radiosondes, the operational surface synoptic (SYNOP) station network, and RAdar‐OnLine‐ANeichung (RADOLAN) radar data of DWD indicate that all turbulence schemes investigated perform reasonably well. Nonetheless, a more detailed study of the model results reveals several interesting differences between the turbulence parameterizations to be discussed in detail. Median absolute errors (MAE) from point‐to‐point comparisons between numerical results and SYNOP observations tend to be smaller than those from comparisons with averaging simulated fields over an environment around each station location. This behavior indicates an information loss caused by the averaging process. For the 2‐m temperature () and the hourly precipitation sums (), MAEs decrease with decreasing grid sizes, thus suggesting an information gain for finer grids. The nighttime MAEs of and obtained with NLT and NLT are similar to or lower than those of the operational turbulence schemes of ICON. Moreover, during a shallow warm‐air intrusion, NLT and especially NLT yield a more realistic representation of the horizontal structures of and, during nighttime stable boundary‐layer situations, also . Radiosonde profiles of the potential temperature confirm a reasonable vertical mixing as obtained with NLT and NLT.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation and tests of the NLT3D scheme in the ICON model\",\"authors\":\"V. Kuell, A. Bott\",\"doi\":\"10.1002/qj.4789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this article is to test the long‐term performance of the three‐dimensional non‐local turbulence (NLT) parameterization scheme at different grid sizes in the so‐called gray zone between classical mesoscale modeling ( several km) and large eddy simulations (LES: several 100 m). For this, NLT has been implemented in the numerical weather prediction Icosahedral Nonhydrostatic model (ICON) of Deutscher Wetterdienst (DWD). Results are compared with a one‐dimensional version of NLT (NLT) and with two operational turbulence schemes available in ICON. Comparisons with observations from radiosondes, the operational surface synoptic (SYNOP) station network, and RAdar‐OnLine‐ANeichung (RADOLAN) radar data of DWD indicate that all turbulence schemes investigated perform reasonably well. Nonetheless, a more detailed study of the model results reveals several interesting differences between the turbulence parameterizations to be discussed in detail. Median absolute errors (MAE) from point‐to‐point comparisons between numerical results and SYNOP observations tend to be smaller than those from comparisons with averaging simulated fields over an environment around each station location. This behavior indicates an information loss caused by the averaging process. For the 2‐m temperature () and the hourly precipitation sums (), MAEs decrease with decreasing grid sizes, thus suggesting an information gain for finer grids. The nighttime MAEs of and obtained with NLT and NLT are similar to or lower than those of the operational turbulence schemes of ICON. Moreover, during a shallow warm‐air intrusion, NLT and especially NLT yield a more realistic representation of the horizontal structures of and, during nighttime stable boundary‐layer situations, also . Radiosonde profiles of the potential temperature confirm a reasonable vertical mixing as obtained with NLT and NLT.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4789\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4789","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是测试三维非局域湍流(NLT)参数化方案在经典中尺度建模(几千米)和大涡模拟(LES:几百米)之间所谓灰色区域的不同网格尺寸下的长期性能。为此,在德国气象局(DWD)的数值天气预报二十面体非静水模型(ICON)中实施了 NLT。研究结果与 NLT 的一维版本(NLT)以及 ICON 中的两种运行湍流方案进行了比较。与无线电探空仪观测数据、DWD 的运行地面同步(SYNOP)台站网络和 RAdar-OnLine-ANeichung (RADOLAN)雷达数据进行比较后发现,所有研究的湍流方案都有相当不错的表现。然而,对模型结果进行更详细的研究发现,湍流参数之间存在一些有趣的差异,我们将对这些差异进行详细讨论。数值结果与 SYNOP 观测结果点对点比较的中位绝对误差(MAE)往往小于各站点周围环境模拟场平均比较的中位绝对误差(MAE)。这种情况表明平均过程造成了信息损失。对于 2 米气温()和每小时降水量总和(),均方差误差随网格大小的减小而减小,这表明网格越细,信息量越大。使用 NLT 和 NLT 得到的夜间 MAEs 与 ICON 的运行湍流方案相似或更低。此外,在浅层暖空气入侵期间,NLT,尤其是 NLT 能更真实地反映 和 的水平结构,而在夜间稳定边界层情况下,NLT 也能更真实地反映 和 的水平结构。雷达探测到的潜在温度曲线证实了 NLT 和 NLT 所得到的合理垂直混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation and tests of the NLT3D scheme in the ICON model
The main goal of this article is to test the long‐term performance of the three‐dimensional non‐local turbulence (NLT) parameterization scheme at different grid sizes in the so‐called gray zone between classical mesoscale modeling ( several km) and large eddy simulations (LES: several 100 m). For this, NLT has been implemented in the numerical weather prediction Icosahedral Nonhydrostatic model (ICON) of Deutscher Wetterdienst (DWD). Results are compared with a one‐dimensional version of NLT (NLT) and with two operational turbulence schemes available in ICON. Comparisons with observations from radiosondes, the operational surface synoptic (SYNOP) station network, and RAdar‐OnLine‐ANeichung (RADOLAN) radar data of DWD indicate that all turbulence schemes investigated perform reasonably well. Nonetheless, a more detailed study of the model results reveals several interesting differences between the turbulence parameterizations to be discussed in detail. Median absolute errors (MAE) from point‐to‐point comparisons between numerical results and SYNOP observations tend to be smaller than those from comparisons with averaging simulated fields over an environment around each station location. This behavior indicates an information loss caused by the averaging process. For the 2‐m temperature () and the hourly precipitation sums (), MAEs decrease with decreasing grid sizes, thus suggesting an information gain for finer grids. The nighttime MAEs of and obtained with NLT and NLT are similar to or lower than those of the operational turbulence schemes of ICON. Moreover, during a shallow warm‐air intrusion, NLT and especially NLT yield a more realistic representation of the horizontal structures of and, during nighttime stable boundary‐layer situations, also . Radiosonde profiles of the potential temperature confirm a reasonable vertical mixing as obtained with NLT and NLT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1