{"title":"角鲨胺抑制剂与膜结合型Α-突触核蛋白结合的结构洞察的硅学研究","authors":"Dorothy Das, Priyam Bharadwaz, Venkata Satish Kumar Mattaparthi","doi":"10.2174/0115701646301714240703100842","DOIUrl":null,"url":null,"abstract":"Background: Parkinson's disease (PD) and its associated symptoms are closely associated with the self-assembly of α-Synuclein (α-Syn). Squalamine is a naturally occurring chemical substance with established antiviral and anticancer properties, and its profound impact on the α- Syn aggregation both in vivo and in vitro is well studied. Examining its interaction with lipid vesicles, which are known to encourage nucleation, can signify the mechanism of action of squalamine. The squalamine molecule is believed to displace α-Syn from the surfaces of the lipid vesicles, therefore preventing the initial steps in the process of aggregation. Additionally, the squalamine molecule reduces the harmful effects of α-Syn oligomers in human neuroblastoma cells by preventing them from interacting with lipid membranes. Objective: The aim of this study was to perform computational investigation of the conformational changes of membrane-bound α-Syn in the presence of squalamine inhibitor molecule objective: Computational investigation of the conformational changes of membrane-bound α-Synuclein in the presence of squalamine inhibitor molecule Method: Molecular Dynamics (MD) trajectory analysis was carried out to study the structural change of the α-Syn-squalamine conformers as a function of simulation time. The percentage of the secondary structural components of the α-Syn-squalamine complex was determined. Optimization of small molecule inhibitors was carried out using Density Functional Theory (DFT) analysis. Additionally, the values of electrophilicity (ω), nucleophilicity (N), Electron affinity (EA), and ionization potential (IP) were calculated. Results: The docking of the α-Syn-squalamine complex revealed the binding site and the best structure was selected based on the highest docking vina score (-5.8), and the contact residues were listed. From the conformational snapshots of the α-Syn-squalamine complex, it was evident that the α-Syn remained stable, maintaining its integrity throughout the simulation. The α-helical content was found to be retained from the secondary structural content analysis. The ω and N of the squalamine molecule were calculated to be -0.84 and 3.25, respectively. Conclusion: Our findings suggest that in the presence of a squalamine inhibitor molecule, α-Syn adopts a helical conformation that ensures stability and may indicate that the squalamine molecule causes gradual displacement of α-Syn across different regions within the lipid membrane.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"33 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico Investigation on the Structural Insights into the Binding of Squalamine Inhibitor with Membrane-Bound Α-Synuclein\",\"authors\":\"Dorothy Das, Priyam Bharadwaz, Venkata Satish Kumar Mattaparthi\",\"doi\":\"10.2174/0115701646301714240703100842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Parkinson's disease (PD) and its associated symptoms are closely associated with the self-assembly of α-Synuclein (α-Syn). Squalamine is a naturally occurring chemical substance with established antiviral and anticancer properties, and its profound impact on the α- Syn aggregation both in vivo and in vitro is well studied. Examining its interaction with lipid vesicles, which are known to encourage nucleation, can signify the mechanism of action of squalamine. The squalamine molecule is believed to displace α-Syn from the surfaces of the lipid vesicles, therefore preventing the initial steps in the process of aggregation. Additionally, the squalamine molecule reduces the harmful effects of α-Syn oligomers in human neuroblastoma cells by preventing them from interacting with lipid membranes. Objective: The aim of this study was to perform computational investigation of the conformational changes of membrane-bound α-Syn in the presence of squalamine inhibitor molecule objective: Computational investigation of the conformational changes of membrane-bound α-Synuclein in the presence of squalamine inhibitor molecule Method: Molecular Dynamics (MD) trajectory analysis was carried out to study the structural change of the α-Syn-squalamine conformers as a function of simulation time. The percentage of the secondary structural components of the α-Syn-squalamine complex was determined. Optimization of small molecule inhibitors was carried out using Density Functional Theory (DFT) analysis. Additionally, the values of electrophilicity (ω), nucleophilicity (N), Electron affinity (EA), and ionization potential (IP) were calculated. Results: The docking of the α-Syn-squalamine complex revealed the binding site and the best structure was selected based on the highest docking vina score (-5.8), and the contact residues were listed. From the conformational snapshots of the α-Syn-squalamine complex, it was evident that the α-Syn remained stable, maintaining its integrity throughout the simulation. The α-helical content was found to be retained from the secondary structural content analysis. The ω and N of the squalamine molecule were calculated to be -0.84 and 3.25, respectively. Conclusion: Our findings suggest that in the presence of a squalamine inhibitor molecule, α-Syn adopts a helical conformation that ensures stability and may indicate that the squalamine molecule causes gradual displacement of α-Syn across different regions within the lipid membrane.\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701646301714240703100842\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646301714240703100842","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
In silico Investigation on the Structural Insights into the Binding of Squalamine Inhibitor with Membrane-Bound Α-Synuclein
Background: Parkinson's disease (PD) and its associated symptoms are closely associated with the self-assembly of α-Synuclein (α-Syn). Squalamine is a naturally occurring chemical substance with established antiviral and anticancer properties, and its profound impact on the α- Syn aggregation both in vivo and in vitro is well studied. Examining its interaction with lipid vesicles, which are known to encourage nucleation, can signify the mechanism of action of squalamine. The squalamine molecule is believed to displace α-Syn from the surfaces of the lipid vesicles, therefore preventing the initial steps in the process of aggregation. Additionally, the squalamine molecule reduces the harmful effects of α-Syn oligomers in human neuroblastoma cells by preventing them from interacting with lipid membranes. Objective: The aim of this study was to perform computational investigation of the conformational changes of membrane-bound α-Syn in the presence of squalamine inhibitor molecule objective: Computational investigation of the conformational changes of membrane-bound α-Synuclein in the presence of squalamine inhibitor molecule Method: Molecular Dynamics (MD) trajectory analysis was carried out to study the structural change of the α-Syn-squalamine conformers as a function of simulation time. The percentage of the secondary structural components of the α-Syn-squalamine complex was determined. Optimization of small molecule inhibitors was carried out using Density Functional Theory (DFT) analysis. Additionally, the values of electrophilicity (ω), nucleophilicity (N), Electron affinity (EA), and ionization potential (IP) were calculated. Results: The docking of the α-Syn-squalamine complex revealed the binding site and the best structure was selected based on the highest docking vina score (-5.8), and the contact residues were listed. From the conformational snapshots of the α-Syn-squalamine complex, it was evident that the α-Syn remained stable, maintaining its integrity throughout the simulation. The α-helical content was found to be retained from the secondary structural content analysis. The ω and N of the squalamine molecule were calculated to be -0.84 and 3.25, respectively. Conclusion: Our findings suggest that in the presence of a squalamine inhibitor molecule, α-Syn adopts a helical conformation that ensures stability and may indicate that the squalamine molecule causes gradual displacement of α-Syn across different regions within the lipid membrane.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.