{"title":"立方相和四方相之间的竞争诱导了 CoxMn3-xO4 (1 ≤ x ≤ 2) 尖晶石纳米粒子中不寻常的垂直磁化偏移和交换偏差","authors":"Sanjna Rajput, Chandana Rath","doi":"10.1002/pssb.202400090","DOIUrl":null,"url":null,"abstract":"Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Mn<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub> (1 ≤ <jats:italic>x</jats:italic> ≤ 2) spinel nanoparticles synthesized through conventional coprecipitation technique exhibit the coexistence of tetragonal and cubic phases in the range of 1 ≤ <jats:italic>x</jats:italic> ≤ 1.5, while a pure cubic phase is observed for 1.75 ≤ <jats:italic>x</jats:italic> ≤ 2 at room temperature. Reduction in tetragonal phase fraction from 92 % for <jats:italic>x</jats:italic> = 1 to 47% for <jats:italic>x</jats:italic> = 1.5 is attributed to diminution of Jahn–Teller (J–T) active Mn<jats:sup>3+</jats:sup> ions occupying the octahedral site of spinel lattice. X‐ray photoelectron spectroscopy confirms both +2 and +3 oxidation states for Co and Mn. Surprisingly, cubic and tetragonal phases exhibit magnetic transition, Tc<jats:sub>1</jats:sub> and Tc<jats:sub>2</jats:sub>, corresponding to a paramagnetic to a high and low temperature ferrimagnetic state, respectively. Tetragonal phase induces high spontaneous (H<jats:sub>SEB</jats:sub>) and conventional (H<jats:sub>CEB</jats:sub>) exchange bias with unusually high vertical magnetization shift (VMS) than that of the pure cubic phase, shows maximum H<jats:sub>CEB</jats:sub> of 4.062 kOe for <jats:italic>x</jats:italic> = 1.5 and a VMS of 2.5 emu g<jats:sup>−1</jats:sup> for <jats:italic>x</jats:italic> = 1. Such dependence of VMS and exchange bias on tetragonal to cubic phase ratio in Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Mn<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub> is demonstrated for the first time and interpreted based on the interaction between different arrangement of spins in tetrahedral and octahedral sublattice.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"57 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competition between Cubic and Tetragonal Phase Induced Unusual Vertical Magnetization Shift and Exchange Bias in CoxMn3−xO4 (1 ≤ x ≤ 2) Spinel Nanoparticles\",\"authors\":\"Sanjna Rajput, Chandana Rath\",\"doi\":\"10.1002/pssb.202400090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Mn<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub> (1 ≤ <jats:italic>x</jats:italic> ≤ 2) spinel nanoparticles synthesized through conventional coprecipitation technique exhibit the coexistence of tetragonal and cubic phases in the range of 1 ≤ <jats:italic>x</jats:italic> ≤ 1.5, while a pure cubic phase is observed for 1.75 ≤ <jats:italic>x</jats:italic> ≤ 2 at room temperature. Reduction in tetragonal phase fraction from 92 % for <jats:italic>x</jats:italic> = 1 to 47% for <jats:italic>x</jats:italic> = 1.5 is attributed to diminution of Jahn–Teller (J–T) active Mn<jats:sup>3+</jats:sup> ions occupying the octahedral site of spinel lattice. X‐ray photoelectron spectroscopy confirms both +2 and +3 oxidation states for Co and Mn. Surprisingly, cubic and tetragonal phases exhibit magnetic transition, Tc<jats:sub>1</jats:sub> and Tc<jats:sub>2</jats:sub>, corresponding to a paramagnetic to a high and low temperature ferrimagnetic state, respectively. Tetragonal phase induces high spontaneous (H<jats:sub>SEB</jats:sub>) and conventional (H<jats:sub>CEB</jats:sub>) exchange bias with unusually high vertical magnetization shift (VMS) than that of the pure cubic phase, shows maximum H<jats:sub>CEB</jats:sub> of 4.062 kOe for <jats:italic>x</jats:italic> = 1.5 and a VMS of 2.5 emu g<jats:sup>−1</jats:sup> for <jats:italic>x</jats:italic> = 1. Such dependence of VMS and exchange bias on tetragonal to cubic phase ratio in Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Mn<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub> is demonstrated for the first time and interpreted based on the interaction between different arrangement of spins in tetrahedral and octahedral sublattice.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400090\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400090","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
在室温下,通过传统共沉淀技术合成的 CoxMn3-xO4 (1 ≤ x ≤ 2) 尖晶石纳米粒子在 1 ≤ x ≤ 1.5 的范围内表现出四方相和立方相共存,而在 1.75 ≤ x ≤ 2 的范围内则表现出纯立方相。四方相的比例从 x = 1 时的 92% 降至 x = 1.5 时的 47%,这是因为占据尖晶石晶格八面体位点的 Jahn-Teller (J-T) 活性 Mn3+ 离子减少了。X 射线光电子能谱证实了 Co 和 Mn 的 +2 和 +3 氧化态。令人惊讶的是,立方相和四方相表现出磁性转变(Tc1 和 Tc2),分别对应于顺磁态到高温和低温铁磁态。与纯立方相相比,四方相诱导高自发(HSEB)和常规(HCEB)交换偏置,具有异常高的垂直磁化偏移(VMS),在 x = 1.5 时显示最大 HCEB 为 4.062 kOe,在 x = 1 时显示 VMS 为 2.5 emu g-1。VMS 和交换偏置对 CoxMn3-xO4 中四方相与立方相比例的这种依赖关系是首次得到证实,并基于四面体和八面体亚晶格中不同排列的自旋之间的相互作用进行了解释。
Competition between Cubic and Tetragonal Phase Induced Unusual Vertical Magnetization Shift and Exchange Bias in CoxMn3−xO4 (1 ≤ x ≤ 2) Spinel Nanoparticles
CoxMn3−xO4 (1 ≤ x ≤ 2) spinel nanoparticles synthesized through conventional coprecipitation technique exhibit the coexistence of tetragonal and cubic phases in the range of 1 ≤ x ≤ 1.5, while a pure cubic phase is observed for 1.75 ≤ x ≤ 2 at room temperature. Reduction in tetragonal phase fraction from 92 % for x = 1 to 47% for x = 1.5 is attributed to diminution of Jahn–Teller (J–T) active Mn3+ ions occupying the octahedral site of spinel lattice. X‐ray photoelectron spectroscopy confirms both +2 and +3 oxidation states for Co and Mn. Surprisingly, cubic and tetragonal phases exhibit magnetic transition, Tc1 and Tc2, corresponding to a paramagnetic to a high and low temperature ferrimagnetic state, respectively. Tetragonal phase induces high spontaneous (HSEB) and conventional (HCEB) exchange bias with unusually high vertical magnetization shift (VMS) than that of the pure cubic phase, shows maximum HCEB of 4.062 kOe for x = 1.5 and a VMS of 2.5 emu g−1 for x = 1. Such dependence of VMS and exchange bias on tetragonal to cubic phase ratio in CoxMn3−xO4 is demonstrated for the first time and interpreted based on the interaction between different arrangement of spins in tetrahedral and octahedral sublattice.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.