{"title":"通过再现间隙流构建多层小肠样组织","authors":"Sayaka Deguchi, Kaori Kosugi, Naoki Takeishi, Yukio Watanabe, Shiho Morimoto, Ryosuke Negoro, Fuki Yokoi, Hiroki Futatsusako, May Nakajima-Koyama, Mio Iwasaki, Takuya Yamamoto, Yoshiya Kawaguchi, Yu-suke Torisawa, Kazuo Takayama","doi":"10.1016/j.stem.2024.06.012","DOIUrl":null,"url":null,"abstract":"<p>Recent advances have made modeling human small intestines <em>in vitro</em> possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an <em>in vivo</em>-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":null,"pages":null},"PeriodicalIF":19.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of multilayered small intestine-like tissue by reproducing interstitial flow\",\"authors\":\"Sayaka Deguchi, Kaori Kosugi, Naoki Takeishi, Yukio Watanabe, Shiho Morimoto, Ryosuke Negoro, Fuki Yokoi, Hiroki Futatsusako, May Nakajima-Koyama, Mio Iwasaki, Takuya Yamamoto, Yoshiya Kawaguchi, Yu-suke Torisawa, Kazuo Takayama\",\"doi\":\"10.1016/j.stem.2024.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances have made modeling human small intestines <em>in vitro</em> possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an <em>in vivo</em>-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.06.012\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.06.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Construction of multilayered small intestine-like tissue by reproducing interstitial flow
Recent advances have made modeling human small intestines in vitro possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an in vivo-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.