葡萄膜黑色素瘤肝转移患者临床和放射学参数的预后价值。

IF 3.9 3区 医学 Q2 CELL BIOLOGY Pigment Cell & Melanoma Research Pub Date : 2024-07-12 DOI:10.1111/pcmr.13184
Mael Lever, Simon Bogner, Melina Giousmas, Fabian D. Mairinger, Hideo A. Baba, Heike Richly, Tanja Gromke, Martin Schuler, Nikolaos E. Bechrakis, Halime Kalkavan
{"title":"葡萄膜黑色素瘤肝转移患者临床和放射学参数的预后价值。","authors":"Mael Lever,&nbsp;Simon Bogner,&nbsp;Melina Giousmas,&nbsp;Fabian D. Mairinger,&nbsp;Hideo A. Baba,&nbsp;Heike Richly,&nbsp;Tanja Gromke,&nbsp;Martin Schuler,&nbsp;Nikolaos E. Bechrakis,&nbsp;Halime Kalkavan","doi":"10.1111/pcmr.13184","DOIUrl":null,"url":null,"abstract":"<p>Approximately every second patient with uveal melanoma develops distant metastases, with the liver as the predominant target organ. While the median survival after diagnosis of distant metastases is limited to a year, yet-to-be-defined subgroups of patients experience a more favorable outcome. Therefore, prognostic biomarkers could help identify distinct risk groups to guide patient counseling, therapeutic decision-making, and stratification of study populations. To this end, we retrospectively analyzed a cohort of 101 patients with newly diagnosed hepatic metastases from uveal melanoma by using Cox-Lasso regression machine learning, adapted to a high-dimensional input parameter space. We show that substantial binary risk stratification can be performed, based on (i) clinical and laboratory parameters, (ii) measures of quantitative overall hepatic tumor burden, and (iii) radiomic parameters. Yet, combining two or all three domains failed to improve prognostic separation of patients. Additionally, we identified highly relevant clinical parameters (including lactate dehydrogenase, thrombocyte counts, aspartate transaminase, and the metastasis-free interval) at first diagnosis of metastatic disease as predictors for time-to-treatment failure and overall survival. Taken together, the risk stratification models, built by our machine-learning algorithm, identified a comparable and independent prognostic value of clinical, radiological, and radiomic parameters in uveal melanoma patients with hepatic metastases.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"37 6","pages":"831-838"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13184","citationCount":"0","resultStr":"{\"title\":\"Prognostic value of clinical and radiomic parameters in patients with liver metastases from uveal melanoma\",\"authors\":\"Mael Lever,&nbsp;Simon Bogner,&nbsp;Melina Giousmas,&nbsp;Fabian D. Mairinger,&nbsp;Hideo A. Baba,&nbsp;Heike Richly,&nbsp;Tanja Gromke,&nbsp;Martin Schuler,&nbsp;Nikolaos E. Bechrakis,&nbsp;Halime Kalkavan\",\"doi\":\"10.1111/pcmr.13184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Approximately every second patient with uveal melanoma develops distant metastases, with the liver as the predominant target organ. While the median survival after diagnosis of distant metastases is limited to a year, yet-to-be-defined subgroups of patients experience a more favorable outcome. Therefore, prognostic biomarkers could help identify distinct risk groups to guide patient counseling, therapeutic decision-making, and stratification of study populations. To this end, we retrospectively analyzed a cohort of 101 patients with newly diagnosed hepatic metastases from uveal melanoma by using Cox-Lasso regression machine learning, adapted to a high-dimensional input parameter space. We show that substantial binary risk stratification can be performed, based on (i) clinical and laboratory parameters, (ii) measures of quantitative overall hepatic tumor burden, and (iii) radiomic parameters. Yet, combining two or all three domains failed to improve prognostic separation of patients. Additionally, we identified highly relevant clinical parameters (including lactate dehydrogenase, thrombocyte counts, aspartate transaminase, and the metastasis-free interval) at first diagnosis of metastatic disease as predictors for time-to-treatment failure and overall survival. Taken together, the risk stratification models, built by our machine-learning algorithm, identified a comparable and independent prognostic value of clinical, radiological, and radiomic parameters in uveal melanoma patients with hepatic metastases.</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"37 6\",\"pages\":\"831-838\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13184\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大约每两名葡萄膜黑色素瘤患者中就有一人发生远处转移,肝脏是主要的靶器官。虽然确诊远处转移后的中位生存期只有一年,但尚未明确的亚组患者的预后更佳。因此,预后生物标志物有助于确定不同的风险群体,从而为患者咨询、治疗决策和研究人群分层提供指导。为此,我们采用适应高维输入参数空间的 Cox-Lasso 回归机器学习方法,对 101 例新确诊的葡萄膜黑色素瘤肝转移患者进行了回顾性分析。我们的研究表明,可以根据(i)临床和实验室参数、(ii)定量总体肝肿瘤负荷测量值以及(iii)放射学参数进行实质性的二元风险分层。然而,将两个领域或所有三个领域结合起来并不能改善患者的预后分层。此外,我们还确定了首次诊断转移性疾病时高度相关的临床参数(包括乳酸脱氢酶、血小板计数、天冬氨酸转氨酶和无转移间隔期),作为治疗失败时间和总生存期的预测因子。总之,通过我们的机器学习算法建立的风险分层模型发现,在有肝转移的葡萄膜黑色素瘤患者中,临床、放射学和放射学参数具有可比性和独立的预后价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prognostic value of clinical and radiomic parameters in patients with liver metastases from uveal melanoma

Approximately every second patient with uveal melanoma develops distant metastases, with the liver as the predominant target organ. While the median survival after diagnosis of distant metastases is limited to a year, yet-to-be-defined subgroups of patients experience a more favorable outcome. Therefore, prognostic biomarkers could help identify distinct risk groups to guide patient counseling, therapeutic decision-making, and stratification of study populations. To this end, we retrospectively analyzed a cohort of 101 patients with newly diagnosed hepatic metastases from uveal melanoma by using Cox-Lasso regression machine learning, adapted to a high-dimensional input parameter space. We show that substantial binary risk stratification can be performed, based on (i) clinical and laboratory parameters, (ii) measures of quantitative overall hepatic tumor burden, and (iii) radiomic parameters. Yet, combining two or all three domains failed to improve prognostic separation of patients. Additionally, we identified highly relevant clinical parameters (including lactate dehydrogenase, thrombocyte counts, aspartate transaminase, and the metastasis-free interval) at first diagnosis of metastatic disease as predictors for time-to-treatment failure and overall survival. Taken together, the risk stratification models, built by our machine-learning algorithm, identified a comparable and independent prognostic value of clinical, radiological, and radiomic parameters in uveal melanoma patients with hepatic metastases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pigment Cell & Melanoma Research
Pigment Cell & Melanoma Research 医学-皮肤病学
CiteScore
8.90
自引率
2.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders
期刊最新文献
The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State. UVA Irradiation Promotes Melanoma Cell Proliferation Mediated by OPN3 Independently of ROS Production. Issue Information Bay 11-7082, an NF-κB Inhibitor, Prevents Post-Inflammatory Hyperpigmentation Through Inhibition of Inflammation and Melanogenesis. Low-Dose Baricitinib Plus Narrow-Band Ultraviolet B for the Treatment of Progressive Non-Segmental Vitiligo: A Prospective, Controlled, Open-Label Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1