代谢物-微生物配对识别的交叉组学数据分析策略。

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2024-07-12 DOI:10.1002/pmic.202400035
Tao Sun, Dongnan Sun, Junliang Kuang, Xiaowen Chao, Yihan Guo, Mengci Li, Tianlu Chen
{"title":"代谢物-微生物配对识别的交叉组学数据分析策略。","authors":"Tao Sun,&nbsp;Dongnan Sun,&nbsp;Junliang Kuang,&nbsp;Xiaowen Chao,&nbsp;Yihan Guo,&nbsp;Mengci Li,&nbsp;Tianlu Chen","doi":"10.1002/pmic.202400035","DOIUrl":null,"url":null,"abstract":"<p>Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"24 21-22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cross-omics data analysis strategy for metabolite-microbe pair identification\",\"authors\":\"Tao Sun,&nbsp;Dongnan Sun,&nbsp;Junliang Kuang,&nbsp;Xiaowen Chao,&nbsp;Yihan Guo,&nbsp;Mengci Li,&nbsp;Tianlu Chen\",\"doi\":\"10.1002/pmic.202400035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\"24 21-22\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202400035\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202400035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

鉴于代谢组学和微生物组学的关键作用,许多数据挖掘方法都旨在揭示它们之间错综复杂的联系。然而,代谢组-微生物组图谱之间复杂的多对多关联产生了许多在统计学上有意义但在生物学上未经验证的候选者。为了应对这些挑战,我们引入了 BiOFI,这是一个用于识别代谢组-微生物组相关对(Bi-Omics)的战略框架。BiOFI 采用综合评分系统,将组间差异、对特征相关网络的影响以及生物丰度纳入其中。同时,它还建立了一个代谢物-微生物-KEGG 功能通路连接关系的内置数据库。此外,BiOFI 还能结合重要性得分和相关性强度对相关特征对进行排序。对剖腹产婴儿数据集的验证证实了该策略的有效性和可解释性。BiOFI R 软件包可在 https://github.com/chentianlu/BiOFI 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A cross-omics data analysis strategy for metabolite-microbe pair identification

Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease. The Proteomic Landscape of the Coronary Accessible Heart Cell Surfaceome. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Fecal Metaproteomics as a Tool to Monitor Functional Modifications Induced in the Gut Microbiota by Ketogenic Diet: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1