基于心电图的诊断和预后模型,用于快速临床应用。

IF 5.8 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Canadian Journal of Cardiology Pub Date : 2024-10-01 DOI:10.1016/j.cjca.2024.07.003
{"title":"基于心电图的诊断和预后模型,用于快速临床应用。","authors":"","doi":"10.1016/j.cjca.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for &lt; 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.</div></div>","PeriodicalId":9555,"journal":{"name":"Canadian Journal of Cardiology","volume":"40 10","pages":"Pages 1788-1803"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications\",\"authors\":\"\",\"doi\":\"10.1016/j.cjca.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for &lt; 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.</div></div>\",\"PeriodicalId\":9555,\"journal\":{\"name\":\"Canadian Journal of Cardiology\",\"volume\":\"40 10\",\"pages\":\"Pages 1788-1803\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0828282X24005233\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0828282X24005233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用人工智能(AI)分析心电图(ECG)不仅有可能改变心脏疾病的诊断和预后评估,而且越来越多地改变非心脏疾病的诊断和预后评估。在这篇综述中,我们总结了过去五年(2019-2023 年)在心血管疾病(CVD)的早期检测、诊断和预后评估方面的临床研究和基于人工智能增强心电图的临床应用。随着深度学习的进步和心电图技术应用的迅速增加,大量临床研究已经发表。然而,这些研究大多是单中心、回顾性、概念验证研究,缺乏外部验证。从开发到临床应用的前瞻性研究占了
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications
Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for < 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Cardiology
Canadian Journal of Cardiology 医学-心血管系统
CiteScore
9.20
自引率
8.10%
发文量
546
审稿时长
32 days
期刊介绍: The Canadian Journal of Cardiology (CJC) is the official journal of the Canadian Cardiovascular Society (CCS). The CJC is a vehicle for the international dissemination of new knowledge in cardiology and cardiovascular science, particularly serving as the major venue for Canadian cardiovascular medicine.
期刊最新文献
Selecting an Aortic Valve Prosthesis in Patients < 65 Years of Age-Operative Risk vs Long-Term Survival. Macrophages in cardiovascular fibrosis: novel subpopulations, molecular mechanisms, and therapeutic targets. Comprehensive Prevention of Exercise-related Sudden Cardiac Arrest or Death. Dofetilde and flecainide combination: the serendipity of successful treatment of atrial fibrillation after failed ablation. Absolute and Relative Risk of Exercise: When in Doubt, Let Them Play.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1