{"title":"基于心电图的诊断和预后模型,用于快速临床应用。","authors":"","doi":"10.1016/j.cjca.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for < 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.</div></div>","PeriodicalId":9555,"journal":{"name":"Canadian Journal of Cardiology","volume":"40 10","pages":"Pages 1788-1803"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications\",\"authors\":\"\",\"doi\":\"10.1016/j.cjca.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for < 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.</div></div>\",\"PeriodicalId\":9555,\"journal\":{\"name\":\"Canadian Journal of Cardiology\",\"volume\":\"40 10\",\"pages\":\"Pages 1788-1803\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0828282X24005233\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0828282X24005233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications
Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for < 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.
期刊介绍:
The Canadian Journal of Cardiology (CJC) is the official journal of the Canadian Cardiovascular Society (CCS). The CJC is a vehicle for the international dissemination of new knowledge in cardiology and cardiovascular science, particularly serving as the major venue for Canadian cardiovascular medicine.