建立人类牙髓组织的三维外植体培养。

IF 2.5 4区 医学 Q3 CELL & TISSUE ENGINEERING International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2024-07-12 DOI:10.15283/ijsc23105
Eun Jin Seo, Soyoung Park, Eungyung Lee, Yang Hoon Huh, Ye Eun Ha, Gabor J Tigyi, Taesung Jeong, Il Ho Jang, Jonghyun Shin
{"title":"建立人类牙髓组织的三维外植体培养。","authors":"Eun Jin Seo, Soyoung Park, Eungyung Lee, Yang Hoon Huh, Ye Eun Ha, Gabor J Tigyi, Taesung Jeong, Il Ho Jang, Jonghyun Shin","doi":"10.15283/ijsc23105","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and <i>in situ</i> development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"330-336"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Establishing Three-Dimensional Explant Culture of Human Dental Pulp Tissue.\",\"authors\":\"Eun Jin Seo, Soyoung Park, Eungyung Lee, Yang Hoon Huh, Ye Eun Ha, Gabor J Tigyi, Taesung Jeong, Il Ho Jang, Jonghyun Shin\",\"doi\":\"10.15283/ijsc23105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and <i>in situ</i> development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.</p>\",\"PeriodicalId\":14392,\"journal\":{\"name\":\"International journal of stem cells\",\"volume\":\" \",\"pages\":\"330-336\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15283/ijsc23105\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc23105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

牙科组织中的间充质干细胞具有分化为不同牙科系的特性,作为牙科再生医学的重要手段,蕴含着巨大的潜力。在各种牙科组织中,牙髓含有维持牙本质平衡的干细胞、祖细胞和牙本质母细胞。由于活组织是三维(3D)结构,传统的干细胞培养方法存在局限性。最近,类器官培养的发展成功地再现了三维结构,并推进了不同类型的组装。本研究采用类器官培养法建立了人类牙髓组织的三维外植体培养方案。从人类牙齿中分离出牙髓后,将完整的牙髓组织置于两层 Matrigel 之间并加入培养基。前牙本质层的网状生长持续了一个月,并在接近末期观察到牙本质的随机堆积。电子显微镜显示了牙本质的细胞组织和原位发育,免疫组化显示了牙本质细胞和干细胞标记物在生长区的表达。人类牙髓的三维外植体培养将为了解牙齿内部的干细胞生物学和开发再生医学提供一个新的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing Three-Dimensional Explant Culture of Human Dental Pulp Tissue.

Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and in situ development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of stem cells
International journal of stem cells Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.10
自引率
4.30%
发文量
38
期刊介绍: International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.
期刊最新文献
Mesenchymal Stem Cells Mediated Suppression of GREM2 Inhibits Renal Epithelial-Mesenchymal Transition and Attenuates the Progression of Diabetic Kidney Disease. The Effect of Nerve Growth Factor on Cartilage Fibrosis and Hypertrophy during In Vitro Chondrogenesis Using Induced Pluripotent Stem Cells. Endothelial Progenitor Cells: A Brief Update. Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1