Daniel D Liang, David D Liang, Marc J Pomeroy, Yongfeng Gao, Licheng R Kuo, Lihong C Li
{"title":"研究用于诊断低剂量计算机断层扫描筛查检测到的体内病变的机器学习中的特征提取和分类模块。","authors":"Daniel D Liang, David D Liang, Marc J Pomeroy, Yongfeng Gao, Licheng R Kuo, Lihong C Li","doi":"10.1117/1.JMI.11.4.044501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Medical imaging-based machine learning (ML) for computer-aided diagnosis of <i>in vivo</i> lesions consists of two basic components or modules of (i) feature extraction from non-invasively acquired medical images and (ii) feature classification for prediction of malignancy of lesions detected or localized in the medical images. This study investigates their individual performances for diagnosis of low-dose computed tomography (CT) screening-detected lesions of pulmonary nodules and colorectal polyps.</p><p><strong>Approach: </strong>Three feature extraction methods were investigated. One uses the mathematical descriptor of gray-level co-occurrence image texture measure to extract the Haralick image texture features (HFs). One uses the convolutional neural network (CNN) architecture to extract deep learning (DL) image abstractive features (DFs). The third one uses the interactions between lesion tissues and X-ray energy of CT to extract tissue-energy specific characteristic features (TFs). All the above three categories of extracted features were classified by the random forest (RF) classifier with comparison to the DL-CNN method, which reads the images, extracts the DFs, and classifies the DFs in an end-to-end manner. The ML diagnosis of lesions or prediction of lesion malignancy was measured by the area under the receiver operating characteristic curve (AUC). Three lesion image datasets were used. The lesions' tissue pathological reports were used as the learning labels.</p><p><strong>Results: </strong>Experiments on the three datasets produced AUC values of 0.724 to 0.878 for the HFs, 0.652 to 0.965 for the DFs, and 0.985 to 0.996 for the TFs, compared to the DL-CNN of 0.694 to 0.964. These experimental outcomes indicate that the RF classifier performed comparably to the DL-CNN classification module and the extraction of tissue-energy specific characteristic features dramatically improved AUC value.</p><p><strong>Conclusions: </strong>The feature extraction module is more important than the feature classification module. Extraction of tissue-energy specific characteristic features is more important than extraction of image abstractive and characteristic features.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044501"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Examining feature extraction and classification modules in machine learning for diagnosis of low-dose computed tomographic screening-detected <i>in vivo</i> lesions.\",\"authors\":\"Daniel D Liang, David D Liang, Marc J Pomeroy, Yongfeng Gao, Licheng R Kuo, Lihong C Li\",\"doi\":\"10.1117/1.JMI.11.4.044501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Medical imaging-based machine learning (ML) for computer-aided diagnosis of <i>in vivo</i> lesions consists of two basic components or modules of (i) feature extraction from non-invasively acquired medical images and (ii) feature classification for prediction of malignancy of lesions detected or localized in the medical images. This study investigates their individual performances for diagnosis of low-dose computed tomography (CT) screening-detected lesions of pulmonary nodules and colorectal polyps.</p><p><strong>Approach: </strong>Three feature extraction methods were investigated. One uses the mathematical descriptor of gray-level co-occurrence image texture measure to extract the Haralick image texture features (HFs). One uses the convolutional neural network (CNN) architecture to extract deep learning (DL) image abstractive features (DFs). The third one uses the interactions between lesion tissues and X-ray energy of CT to extract tissue-energy specific characteristic features (TFs). All the above three categories of extracted features were classified by the random forest (RF) classifier with comparison to the DL-CNN method, which reads the images, extracts the DFs, and classifies the DFs in an end-to-end manner. The ML diagnosis of lesions or prediction of lesion malignancy was measured by the area under the receiver operating characteristic curve (AUC). Three lesion image datasets were used. The lesions' tissue pathological reports were used as the learning labels.</p><p><strong>Results: </strong>Experiments on the three datasets produced AUC values of 0.724 to 0.878 for the HFs, 0.652 to 0.965 for the DFs, and 0.985 to 0.996 for the TFs, compared to the DL-CNN of 0.694 to 0.964. These experimental outcomes indicate that the RF classifier performed comparably to the DL-CNN classification module and the extraction of tissue-energy specific characteristic features dramatically improved AUC value.</p><p><strong>Conclusions: </strong>The feature extraction module is more important than the feature classification module. Extraction of tissue-energy specific characteristic features is more important than extraction of image abstractive and characteristic features.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 4\",\"pages\":\"044501\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.4.044501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.044501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Examining feature extraction and classification modules in machine learning for diagnosis of low-dose computed tomographic screening-detected in vivo lesions.
Purpose: Medical imaging-based machine learning (ML) for computer-aided diagnosis of in vivo lesions consists of two basic components or modules of (i) feature extraction from non-invasively acquired medical images and (ii) feature classification for prediction of malignancy of lesions detected or localized in the medical images. This study investigates their individual performances for diagnosis of low-dose computed tomography (CT) screening-detected lesions of pulmonary nodules and colorectal polyps.
Approach: Three feature extraction methods were investigated. One uses the mathematical descriptor of gray-level co-occurrence image texture measure to extract the Haralick image texture features (HFs). One uses the convolutional neural network (CNN) architecture to extract deep learning (DL) image abstractive features (DFs). The third one uses the interactions between lesion tissues and X-ray energy of CT to extract tissue-energy specific characteristic features (TFs). All the above three categories of extracted features were classified by the random forest (RF) classifier with comparison to the DL-CNN method, which reads the images, extracts the DFs, and classifies the DFs in an end-to-end manner. The ML diagnosis of lesions or prediction of lesion malignancy was measured by the area under the receiver operating characteristic curve (AUC). Three lesion image datasets were used. The lesions' tissue pathological reports were used as the learning labels.
Results: Experiments on the three datasets produced AUC values of 0.724 to 0.878 for the HFs, 0.652 to 0.965 for the DFs, and 0.985 to 0.996 for the TFs, compared to the DL-CNN of 0.694 to 0.964. These experimental outcomes indicate that the RF classifier performed comparably to the DL-CNN classification module and the extraction of tissue-energy specific characteristic features dramatically improved AUC value.
Conclusions: The feature extraction module is more important than the feature classification module. Extraction of tissue-energy specific characteristic features is more important than extraction of image abstractive and characteristic features.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.