{"title":"ACP-PDAFF:用于抗癌肽预测的预训练模型和双通道注意特征融合","authors":"Xinyi Wang, Shunfang Wang","doi":"10.1016/j.compbiolchem.2024.108141","DOIUrl":null,"url":null,"abstract":"<div><p>Anticancer peptides(ACPs) have attracted significant interest as a novel method of treating cancer due to their ability to selectively kill cancer cells without damaging normal cells. Many artificial intelligence-based methods have demonstrated impressive performance in predicting ACPs. Nevertheless, the limitations of existing methods in feature engineering include handcrafted features driven by prior knowledge, insufficient feature extraction, and inefficient feature fusion. In this study, we propose a model based on a pretrained model, and dual-channel attentional feature fusion(DAFF), called ACP-PDAFF. Firstly, to reduce the heavy dependence on expert knowledge-based handcrafted features, binary profile features (BPF) and physicochemical properties features(PCPF) are used as inputs to the transformer model. Secondly, aimed at learning more diverse feature informations of ACPs, a pretrained model ProtBert is utilized. Thirdly, for better fusion of different feature channels, DAFF is employed. Finally, to evaluate the performance of the model, we compare it with other methods on five benchmark datasets, including ACP-Mixed-80 dataset, Main and Alternate datasets of AntiCP 2.0, LEE and Independet dataset, and ACPred-Fuse dataset. And the accuracies obtained by ACP-PDAFF are 0.86, 0.80, 0.94, 0.97 and 0.95 on five datasets, respectively, higher than existing methods by 1% to 12%. Therefore, by learning rich feature informations and effectively fusing different feature channels, ACD-PDAFF achieves outstanding performance. Our code and the datasets are available at <span>https://github.com/wongsing/ACP-PDAFF</span><svg><path></path></svg>.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction\",\"authors\":\"Xinyi Wang, Shunfang Wang\",\"doi\":\"10.1016/j.compbiolchem.2024.108141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anticancer peptides(ACPs) have attracted significant interest as a novel method of treating cancer due to their ability to selectively kill cancer cells without damaging normal cells. Many artificial intelligence-based methods have demonstrated impressive performance in predicting ACPs. Nevertheless, the limitations of existing methods in feature engineering include handcrafted features driven by prior knowledge, insufficient feature extraction, and inefficient feature fusion. In this study, we propose a model based on a pretrained model, and dual-channel attentional feature fusion(DAFF), called ACP-PDAFF. Firstly, to reduce the heavy dependence on expert knowledge-based handcrafted features, binary profile features (BPF) and physicochemical properties features(PCPF) are used as inputs to the transformer model. Secondly, aimed at learning more diverse feature informations of ACPs, a pretrained model ProtBert is utilized. Thirdly, for better fusion of different feature channels, DAFF is employed. Finally, to evaluate the performance of the model, we compare it with other methods on five benchmark datasets, including ACP-Mixed-80 dataset, Main and Alternate datasets of AntiCP 2.0, LEE and Independet dataset, and ACPred-Fuse dataset. And the accuracies obtained by ACP-PDAFF are 0.86, 0.80, 0.94, 0.97 and 0.95 on five datasets, respectively, higher than existing methods by 1% to 12%. Therefore, by learning rich feature informations and effectively fusing different feature channels, ACD-PDAFF achieves outstanding performance. Our code and the datasets are available at <span>https://github.com/wongsing/ACP-PDAFF</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001294\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001294","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction
Anticancer peptides(ACPs) have attracted significant interest as a novel method of treating cancer due to their ability to selectively kill cancer cells without damaging normal cells. Many artificial intelligence-based methods have demonstrated impressive performance in predicting ACPs. Nevertheless, the limitations of existing methods in feature engineering include handcrafted features driven by prior knowledge, insufficient feature extraction, and inefficient feature fusion. In this study, we propose a model based on a pretrained model, and dual-channel attentional feature fusion(DAFF), called ACP-PDAFF. Firstly, to reduce the heavy dependence on expert knowledge-based handcrafted features, binary profile features (BPF) and physicochemical properties features(PCPF) are used as inputs to the transformer model. Secondly, aimed at learning more diverse feature informations of ACPs, a pretrained model ProtBert is utilized. Thirdly, for better fusion of different feature channels, DAFF is employed. Finally, to evaluate the performance of the model, we compare it with other methods on five benchmark datasets, including ACP-Mixed-80 dataset, Main and Alternate datasets of AntiCP 2.0, LEE and Independet dataset, and ACPred-Fuse dataset. And the accuracies obtained by ACP-PDAFF are 0.86, 0.80, 0.94, 0.97 and 0.95 on five datasets, respectively, higher than existing methods by 1% to 12%. Therefore, by learning rich feature informations and effectively fusing different feature channels, ACD-PDAFF achieves outstanding performance. Our code and the datasets are available at https://github.com/wongsing/ACP-PDAFF.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.