Karolína Štěrbová, Lucie Raisová Stuchlíková, Nikola Rychlá, Kateřina Kohoutová, Markéta Babičková, Lenka Skálová, Petra Matoušková
{"title":"线虫中醛酮还原酶的系统发育和转录组学研究以及氟苯咪唑对它们的诱导作用","authors":"Karolína Štěrbová, Lucie Raisová Stuchlíková, Nikola Rychlá, Kateřina Kohoutová, Markéta Babičková, Lenka Skálová, Petra Matoušková","doi":"10.1016/j.ijpddr.2024.100555","DOIUrl":null,"url":null,"abstract":"<div><p>Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode <em>Haemonchus contortus</em>. In the present study, 22 AKR genes existing in the <em>H. contortus</em> genome were investigated and a phylogenetic analysis with comparison to AKRs in <em>Caenorhabditis elegans</em>, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of <em>H. contortus</em>, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of <em>H. contortus</em> adults to benzimidazole anthelmintic flubendazole <em>in vitro</em> was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in <em>H. contortus</em> lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in <em>H. contortus</em>.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"25 ","pages":"Article 100555"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000368/pdfft?md5=c93325ee1e10575c2febe46eaf79a324&pid=1-s2.0-S2211320724000368-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole\",\"authors\":\"Karolína Štěrbová, Lucie Raisová Stuchlíková, Nikola Rychlá, Kateřina Kohoutová, Markéta Babičková, Lenka Skálová, Petra Matoušková\",\"doi\":\"10.1016/j.ijpddr.2024.100555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode <em>Haemonchus contortus</em>. In the present study, 22 AKR genes existing in the <em>H. contortus</em> genome were investigated and a phylogenetic analysis with comparison to AKRs in <em>Caenorhabditis elegans</em>, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of <em>H. contortus</em>, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of <em>H. contortus</em> adults to benzimidazole anthelmintic flubendazole <em>in vitro</em> was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in <em>H. contortus</em> lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in <em>H. contortus</em>.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"25 \",\"pages\":\"Article 100555\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000368/pdfft?md5=c93325ee1e10575c2febe46eaf79a324&pid=1-s2.0-S2211320724000368-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000368\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000368","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole
Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.