{"title":"噪声感知和公平的城市空中交通管理:优化方法","authors":"Zhenyu Gao , Yue Yu , Qinshuang Wei , Ufuk Topcu , John-Paul Clarke","doi":"10.1016/j.trc.2024.104740","DOIUrl":null,"url":null,"abstract":"<div><p>Urban air mobility (UAM), a transformative concept for the transport of passengers and cargo, faces several integration challenges in complex urban environments. Community acceptance of aircraft noise is among the most noticeable of these challenges when launching or scaling up a UAM system. Properly managing community noise is fundamental to establishing a UAM system that is environmentally and socially sustainable. In this work, we develop a holistic and equitable approach to manage UAM air traffic and its community noise impact in urban environments. The proposed approach is a hybrid approach that considers a mix of different noise mitigation strategies, including limiting the number of operations, cruising at higher altitudes, and ambient noise masking. We tackle the problem through the lens of network system control and formulate a multi-objective optimization model for managing traffic flow in a multi-layer UAM network while concurrently pursuing demand fulfillment, noise control, and energy saving. Further, we use a social welfare function in the optimization model as the basis for the efficiency-fairness trade-off in both demand fulfillment and noise control. We apply the proposed approach to a comprehensive case study in the city of Austin and perform design trade-offs through both visual and quantitative analyses.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise-aware and equitable urban air traffic management: An optimization approach\",\"authors\":\"Zhenyu Gao , Yue Yu , Qinshuang Wei , Ufuk Topcu , John-Paul Clarke\",\"doi\":\"10.1016/j.trc.2024.104740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban air mobility (UAM), a transformative concept for the transport of passengers and cargo, faces several integration challenges in complex urban environments. Community acceptance of aircraft noise is among the most noticeable of these challenges when launching or scaling up a UAM system. Properly managing community noise is fundamental to establishing a UAM system that is environmentally and socially sustainable. In this work, we develop a holistic and equitable approach to manage UAM air traffic and its community noise impact in urban environments. The proposed approach is a hybrid approach that considers a mix of different noise mitigation strategies, including limiting the number of operations, cruising at higher altitudes, and ambient noise masking. We tackle the problem through the lens of network system control and formulate a multi-objective optimization model for managing traffic flow in a multi-layer UAM network while concurrently pursuing demand fulfillment, noise control, and energy saving. Further, we use a social welfare function in the optimization model as the basis for the efficiency-fairness trade-off in both demand fulfillment and noise control. We apply the proposed approach to a comprehensive case study in the city of Austin and perform design trade-offs through both visual and quantitative analyses.</p></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24002614\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24002614","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Noise-aware and equitable urban air traffic management: An optimization approach
Urban air mobility (UAM), a transformative concept for the transport of passengers and cargo, faces several integration challenges in complex urban environments. Community acceptance of aircraft noise is among the most noticeable of these challenges when launching or scaling up a UAM system. Properly managing community noise is fundamental to establishing a UAM system that is environmentally and socially sustainable. In this work, we develop a holistic and equitable approach to manage UAM air traffic and its community noise impact in urban environments. The proposed approach is a hybrid approach that considers a mix of different noise mitigation strategies, including limiting the number of operations, cruising at higher altitudes, and ambient noise masking. We tackle the problem through the lens of network system control and formulate a multi-objective optimization model for managing traffic flow in a multi-layer UAM network while concurrently pursuing demand fulfillment, noise control, and energy saving. Further, we use a social welfare function in the optimization model as the basis for the efficiency-fairness trade-off in both demand fulfillment and noise control. We apply the proposed approach to a comprehensive case study in the city of Austin and perform design trade-offs through both visual and quantitative analyses.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.