{"title":"韦尔型 f(Q)引力中的 FLRW 宇宙学与观测约束","authors":"G.K. Goswami , Rita Rani , J.K. Singh , Anirudh Pradhan","doi":"10.1016/j.jheap.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by various works in a Weyl type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity to reduce some serious problems in General Relativity Theory (GR), we develop a model of the universe in a Weyl type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity which shows the transition from a decelerating state to an accelerating state of the universe at present when we consider a particular functional form of the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity as <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>l</mi><mi>o</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msubsup><mi>Q</mi><mo>)</mo><mo>)</mo></math></span>. We numerically solve Weyl type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity field equations and obtain the numerical solutions to the Hubble parameter, deceleration parameter, distance modulus, and the apparent magnitudes of stellar objects using Ia Supernovae. Also, we obtain numerical solutions for the Weyl vector <em>w</em>, non-metricity scalar <em>Q</em>, and the Lagrangian multiplier <em>λ</em> appearing in the action of <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity. We compare our model with the error bar plots of the observed Hubble dataset of 77 points, SNIa datasets of 580 points, and 1048 supernova Pantheon datasets of the apparent magnitudes, and the statistical analysis using Baryon Acoustic Oscillations (BAO). It is found that our results fit well with the observed values. The model envisages a unique feature: although the universe is filled with perfect fluid as dust whose pressure is zero, the Weyl vector dominance <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> creates acceleration.</p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"43 ","pages":"Pages 105-113"},"PeriodicalIF":10.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FLRW cosmology in Weyl type f(Q) gravity and observational constraints\",\"authors\":\"G.K. Goswami , Rita Rani , J.K. Singh , Anirudh Pradhan\",\"doi\":\"10.1016/j.jheap.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by various works in a Weyl type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity to reduce some serious problems in General Relativity Theory (GR), we develop a model of the universe in a Weyl type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity which shows the transition from a decelerating state to an accelerating state of the universe at present when we consider a particular functional form of the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity as <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mo>(</mo><msup><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>l</mi><mi>o</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msubsup><mi>Q</mi><mo>)</mo><mo>)</mo></math></span>. We numerically solve Weyl type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity field equations and obtain the numerical solutions to the Hubble parameter, deceleration parameter, distance modulus, and the apparent magnitudes of stellar objects using Ia Supernovae. Also, we obtain numerical solutions for the Weyl vector <em>w</em>, non-metricity scalar <em>Q</em>, and the Lagrangian multiplier <em>λ</em> appearing in the action of <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity. We compare our model with the error bar plots of the observed Hubble dataset of 77 points, SNIa datasets of 580 points, and 1048 supernova Pantheon datasets of the apparent magnitudes, and the statistical analysis using Baryon Acoustic Oscillations (BAO). It is found that our results fit well with the observed values. The model envisages a unique feature: although the universe is filled with perfect fluid as dust whose pressure is zero, the Weyl vector dominance <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> creates acceleration.</p></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"43 \",\"pages\":\"Pages 105-113\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404824000545\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824000545","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
FLRW cosmology in Weyl type f(Q) gravity and observational constraints
Inspired by various works in a Weyl type gravity to reduce some serious problems in General Relativity Theory (GR), we develop a model of the universe in a Weyl type gravity which shows the transition from a decelerating state to an accelerating state of the universe at present when we consider a particular functional form of the gravity as . We numerically solve Weyl type gravity field equations and obtain the numerical solutions to the Hubble parameter, deceleration parameter, distance modulus, and the apparent magnitudes of stellar objects using Ia Supernovae. Also, we obtain numerical solutions for the Weyl vector w, non-metricity scalar Q, and the Lagrangian multiplier λ appearing in the action of gravity. We compare our model with the error bar plots of the observed Hubble dataset of 77 points, SNIa datasets of 580 points, and 1048 supernova Pantheon datasets of the apparent magnitudes, and the statistical analysis using Baryon Acoustic Oscillations (BAO). It is found that our results fit well with the observed values. The model envisages a unique feature: although the universe is filled with perfect fluid as dust whose pressure is zero, the Weyl vector dominance creates acceleration.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.