中国食药用枸杞的遗传多样性:叶绿体基因组的启示

IF 4.7 4区 医学 Q1 CHEMISTRY, MEDICINAL Chinese Herbal Medicines Pub Date : 2024-07-01 DOI:10.1016/j.chmed.2024.02.003
Ruyu Yao , Bin Wang , Michael Heinrich , Qiuling Wang , Peigen Xiao
{"title":"中国食药用枸杞的遗传多样性:叶绿体基因组的启示","authors":"Ruyu Yao ,&nbsp;Bin Wang ,&nbsp;Michael Heinrich ,&nbsp;Qiuling Wang ,&nbsp;Peigen Xiao","doi":"10.1016/j.chmed.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Goji (fruits of <em>Lycium</em> spp.) is commonly consumed as food and medicine. The increasing market demand for goji has led to its wide cultivation and broad breeding, which might cause loss of genetic diversity. This study aims to uncover the genetic diversity of the cultivated and wild <em>Lycium</em>.</p></div><div><h3>Methods</h3><p>The chloroplast genome (CPG) of 34 accessions of Chinese food-medicinal <em>Lycium</em> spp., including the popular cultivars and their wild relatives, was re-sequenced and assembled, based on which the genetic diversity was evaluated.</p></div><div><h3>Results</h3><p>Sequence structural comparison shows that CPG is comparatively conserved within species. Phylogenetic analysis indicates that CPG is sufficient for the discrimination of <em>Lycium</em> species; combined with nuclear ribosomal internal transcribed spacer (Nr ITS) sequences, materials with mixed genetic backgrounds can be identified. Nucleotide diversity analysis reveals that the modern cultivars are probably with a common maternal parent, while the wild accessions are with higher level of genetic diversity.</p></div><div><h3>Conclusion</h3><p>For the first time this study reveals the intraspecies genetic diversity of <em>Lycium</em> spp. using CPG, highlighting the urgent conservation demand of wild genetic resources of <em>Lycium</em>. Our study also demonstrates that CPG provides crucial evidence for identification of <em>Lycium</em> species with mixed genetic backgrounds and highlights the importance of the wild relatives in genetic diversity conservation. This CPG-based technology will contribute to the sustainable development of medicinal plants broadly.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 401-411"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000376/pdfft?md5=cc5496423b5c8e51dc44c581353ef450&pid=1-s2.0-S1674638424000376-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity of food-medicinal Lycium spp. in China: Insights from chloroplast genome\",\"authors\":\"Ruyu Yao ,&nbsp;Bin Wang ,&nbsp;Michael Heinrich ,&nbsp;Qiuling Wang ,&nbsp;Peigen Xiao\",\"doi\":\"10.1016/j.chmed.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Goji (fruits of <em>Lycium</em> spp.) is commonly consumed as food and medicine. The increasing market demand for goji has led to its wide cultivation and broad breeding, which might cause loss of genetic diversity. This study aims to uncover the genetic diversity of the cultivated and wild <em>Lycium</em>.</p></div><div><h3>Methods</h3><p>The chloroplast genome (CPG) of 34 accessions of Chinese food-medicinal <em>Lycium</em> spp., including the popular cultivars and their wild relatives, was re-sequenced and assembled, based on which the genetic diversity was evaluated.</p></div><div><h3>Results</h3><p>Sequence structural comparison shows that CPG is comparatively conserved within species. Phylogenetic analysis indicates that CPG is sufficient for the discrimination of <em>Lycium</em> species; combined with nuclear ribosomal internal transcribed spacer (Nr ITS) sequences, materials with mixed genetic backgrounds can be identified. Nucleotide diversity analysis reveals that the modern cultivars are probably with a common maternal parent, while the wild accessions are with higher level of genetic diversity.</p></div><div><h3>Conclusion</h3><p>For the first time this study reveals the intraspecies genetic diversity of <em>Lycium</em> spp. using CPG, highlighting the urgent conservation demand of wild genetic resources of <em>Lycium</em>. Our study also demonstrates that CPG provides crucial evidence for identification of <em>Lycium</em> species with mixed genetic backgrounds and highlights the importance of the wild relatives in genetic diversity conservation. This CPG-based technology will contribute to the sustainable development of medicinal plants broadly.</p></div>\",\"PeriodicalId\":9916,\"journal\":{\"name\":\"Chinese Herbal Medicines\",\"volume\":\"16 3\",\"pages\":\"Pages 401-411\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674638424000376/pdfft?md5=cc5496423b5c8e51dc44c581353ef450&pid=1-s2.0-S1674638424000376-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Herbal Medicines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674638424000376\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638424000376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目标枸杞(枸杞属植物的果实)通常作为食品和药物食用。随着市场对枸杞需求的增加,枸杞被广泛种植和繁育,这可能会导致遗传多样性的丧失。结果序列结构比较表明,CPG在种内相对保守。系统发育分析表明,CPG 足以区分枸杞物种;结合核核糖体内部转录间隔序列(Nr ITS),可以识别具有混合遗传背景的材料。核苷酸多样性分析表明,现代栽培品种可能具有共同的母本,而野生品系则具有较高的遗传多样性。我们的研究还表明,CPG 为鉴定具有混合遗传背景的枸杞物种提供了关键证据,并强调了野生近缘种在遗传多样性保护中的重要性。这项基于 CPG 的技术将为药用植物的可持续发展做出广泛贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic diversity of food-medicinal Lycium spp. in China: Insights from chloroplast genome

Objective

Goji (fruits of Lycium spp.) is commonly consumed as food and medicine. The increasing market demand for goji has led to its wide cultivation and broad breeding, which might cause loss of genetic diversity. This study aims to uncover the genetic diversity of the cultivated and wild Lycium.

Methods

The chloroplast genome (CPG) of 34 accessions of Chinese food-medicinal Lycium spp., including the popular cultivars and their wild relatives, was re-sequenced and assembled, based on which the genetic diversity was evaluated.

Results

Sequence structural comparison shows that CPG is comparatively conserved within species. Phylogenetic analysis indicates that CPG is sufficient for the discrimination of Lycium species; combined with nuclear ribosomal internal transcribed spacer (Nr ITS) sequences, materials with mixed genetic backgrounds can be identified. Nucleotide diversity analysis reveals that the modern cultivars are probably with a common maternal parent, while the wild accessions are with higher level of genetic diversity.

Conclusion

For the first time this study reveals the intraspecies genetic diversity of Lycium spp. using CPG, highlighting the urgent conservation demand of wild genetic resources of Lycium. Our study also demonstrates that CPG provides crucial evidence for identification of Lycium species with mixed genetic backgrounds and highlights the importance of the wild relatives in genetic diversity conservation. This CPG-based technology will contribute to the sustainable development of medicinal plants broadly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Herbal Medicines
Chinese Herbal Medicines CHEMISTRY, MEDICINAL-
CiteScore
4.40
自引率
5.30%
发文量
629
审稿时长
10 weeks
期刊最新文献
DNA metabarcoding uncovers fungal communities in Zingiberis Rhizoma Compound Danshen Dripping Pills combined with isosorbide mononitrate for angina pectoris: A systematic review and a Meta-analysis Metabolomics combined with network pharmacology reveals anti-asthmatic effects of Nepeta bracteata on allergic asthma rats Mechanisms of Shufeng Jiedu Capsule in treating bacterial pneumonia based on network pharmacology and experimental verification Deciphering relationship between depression and microbial molecules based on multi-omics: A case study of Chaigui Granules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1