Lusia Manu , Jeffrie F. Mokolensang , William Ben Gunawan , Astuti Setyawardani , Netty Salindeho , Rony Abdi Syahputra , Muhammad Iqhrammullah , Fahrul Nurkolis
{"title":"光生物反应器在面积效率、气候影响和代谢物含量方面有利于大规模培养微藻。","authors":"Lusia Manu , Jeffrie F. Mokolensang , William Ben Gunawan , Astuti Setyawardani , Netty Salindeho , Rony Abdi Syahputra , Muhammad Iqhrammullah , Fahrul Nurkolis","doi":"10.1016/j.jafr.2024.101282","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae are a diverse group of microorganisms with a wide range of physical characteristics and interactions with their surroundings. They hold great promise as strategic crops capable of producing substantial quantities of valuable biomolecules, such as protein and omega-rich oils, which have extensive applications across multiple industries. This perspective aims to provide an overview of recent advancements in the utilization of photobioreactors for the large-scale cultivation of microalgae. It also delves into the implications of this technology on factors such as land efficiency, environmental impact, and the biochemical composition of microalgae. In this manuscript, the potential solution to these challenges lies in the adoption of vertical semi-closed photobioreactors, which seamlessly integrate photobioreactor technology with principles of vertical farming. This perspective effectively underscores the pivotal role of photobioreactors in mitigating global climate change, as they contribute to processes such as carbon dioxide (CO<sub>2</sub>) sequestration, conversion of greenhouse gases into increased biomass production, enhancement of air quality, and the modulation of climatic parameters. Furthermore, photobioreactors have the capacity to boost the production of bioactive compounds and biomass yields. For future considerations, we propose that the application of microalgae kinetics should be employed to gain a deeper understanding of microalgae production. This knowledge forms a critical foundation for the design and optimization of photobioreactors and the manipulation of microalgae metabolites, thus offering a pathway toward sustainable and efficient microalgae-based bioprocessing.</p></div>","PeriodicalId":34393,"journal":{"name":"Journal of Agriculture and Food Research","volume":"18 ","pages":"Article 101282"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666154324003193/pdfft?md5=3ff7a45c8bc61a2528b468dadde2cbc4&pid=1-s2.0-S2666154324003193-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Photobioreactors are beneficial for mass cultivation of microalgae in terms of areal efficiency, climate implications, and metabolites content\",\"authors\":\"Lusia Manu , Jeffrie F. Mokolensang , William Ben Gunawan , Astuti Setyawardani , Netty Salindeho , Rony Abdi Syahputra , Muhammad Iqhrammullah , Fahrul Nurkolis\",\"doi\":\"10.1016/j.jafr.2024.101282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microalgae are a diverse group of microorganisms with a wide range of physical characteristics and interactions with their surroundings. They hold great promise as strategic crops capable of producing substantial quantities of valuable biomolecules, such as protein and omega-rich oils, which have extensive applications across multiple industries. This perspective aims to provide an overview of recent advancements in the utilization of photobioreactors for the large-scale cultivation of microalgae. It also delves into the implications of this technology on factors such as land efficiency, environmental impact, and the biochemical composition of microalgae. In this manuscript, the potential solution to these challenges lies in the adoption of vertical semi-closed photobioreactors, which seamlessly integrate photobioreactor technology with principles of vertical farming. This perspective effectively underscores the pivotal role of photobioreactors in mitigating global climate change, as they contribute to processes such as carbon dioxide (CO<sub>2</sub>) sequestration, conversion of greenhouse gases into increased biomass production, enhancement of air quality, and the modulation of climatic parameters. Furthermore, photobioreactors have the capacity to boost the production of bioactive compounds and biomass yields. For future considerations, we propose that the application of microalgae kinetics should be employed to gain a deeper understanding of microalgae production. This knowledge forms a critical foundation for the design and optimization of photobioreactors and the manipulation of microalgae metabolites, thus offering a pathway toward sustainable and efficient microalgae-based bioprocessing.</p></div>\",\"PeriodicalId\":34393,\"journal\":{\"name\":\"Journal of Agriculture and Food Research\",\"volume\":\"18 \",\"pages\":\"Article 101282\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666154324003193/pdfft?md5=3ff7a45c8bc61a2528b468dadde2cbc4&pid=1-s2.0-S2666154324003193-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture and Food Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666154324003193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture and Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666154324003193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photobioreactors are beneficial for mass cultivation of microalgae in terms of areal efficiency, climate implications, and metabolites content
Microalgae are a diverse group of microorganisms with a wide range of physical characteristics and interactions with their surroundings. They hold great promise as strategic crops capable of producing substantial quantities of valuable biomolecules, such as protein and omega-rich oils, which have extensive applications across multiple industries. This perspective aims to provide an overview of recent advancements in the utilization of photobioreactors for the large-scale cultivation of microalgae. It also delves into the implications of this technology on factors such as land efficiency, environmental impact, and the biochemical composition of microalgae. In this manuscript, the potential solution to these challenges lies in the adoption of vertical semi-closed photobioreactors, which seamlessly integrate photobioreactor technology with principles of vertical farming. This perspective effectively underscores the pivotal role of photobioreactors in mitigating global climate change, as they contribute to processes such as carbon dioxide (CO2) sequestration, conversion of greenhouse gases into increased biomass production, enhancement of air quality, and the modulation of climatic parameters. Furthermore, photobioreactors have the capacity to boost the production of bioactive compounds and biomass yields. For future considerations, we propose that the application of microalgae kinetics should be employed to gain a deeper understanding of microalgae production. This knowledge forms a critical foundation for the design and optimization of photobioreactors and the manipulation of microalgae metabolites, thus offering a pathway toward sustainable and efficient microalgae-based bioprocessing.