正确的教育环境生命早期的口腔宽容

IF 7.5 2区 医学 Q1 IMMUNOLOGY Immunological Reviews Pub Date : 2024-07-13 DOI:10.1111/imr.13366
Talia R. Cheifetz, Kathryn A. Knoop
{"title":"正确的教育环境生命早期的口腔宽容","authors":"Talia R. Cheifetz,&nbsp;Kathryn A. Knoop","doi":"10.1111/imr.13366","DOIUrl":null,"url":null,"abstract":"<p>Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a “window of tolerance,” which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the “periweaning” period (postnatal day 11–21 in mice, 4–6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs—short-chain fatty acids, tryptophan metabolites, and bile acids—peak during the periweaning phase. Further, breastmilk immunoglobulins—IgA and IgG—regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"326 1","pages":"17-34"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13366","citationCount":"0","resultStr":"{\"title\":\"The right educational environment: Oral tolerance in early life\",\"authors\":\"Talia R. Cheifetz,&nbsp;Kathryn A. Knoop\",\"doi\":\"10.1111/imr.13366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a “window of tolerance,” which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the “periweaning” period (postnatal day 11–21 in mice, 4–6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs—short-chain fatty acids, tryptophan metabolites, and bile acids—peak during the periweaning phase. Further, breastmilk immunoglobulins—IgA and IgG—regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.</p>\",\"PeriodicalId\":178,\"journal\":{\"name\":\"Immunological Reviews\",\"volume\":\"326 1\",\"pages\":\"17-34\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13366\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imr.13366\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imr.13366","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

口腔耐受促进抑制对无害抗原的免疫反应,主要由调节性 T 细胞(Tregs)介导。口腔耐受性的发展始于生命早期的 "耐受窗口期",发生在断奶前后,由母乳中的成分介导。在此,我们将回顾决定这一窗口期的因素以及Tregs如何在生命早期接受独特的教育。在生命早期,用于诱导 Treg 的管腔抗原转运主要由上皮细胞相关抗原通道(GAPs)决定。结肠中的 GAP 受母体来源的表皮生长因子和微生物群的负向调节,从而将 GAP 的形成限制在 "围断奶期"(小鼠出生后第 11-21 天,人类 4-6 个月)。固体食物的诱导也会促进细菌的多样化,因此细菌衍生的代谢物--短链脂肪酸、色氨酸代谢物和胆汁酸--在围断奶期达到峰值,而这些代谢物已知会促进 Tregs 的形成。此外,母乳中的免疫球蛋白--IgA 和 IgG--可调节微生物的多样性以及微生物与上皮细胞的相互作用,从而进一步控制哪些抗原可呈现给 T 细胞。总之,这些因素共同作用,在断奶前后诱导出长寿命的 Tregs 群体,这对维持成人体内平衡至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The right educational environment: Oral tolerance in early life

Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a “window of tolerance,” which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the “periweaning” period (postnatal day 11–21 in mice, 4–6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs—short-chain fatty acids, tryptophan metabolites, and bile acids—peak during the periweaning phase. Further, breastmilk immunoglobulins—IgA and IgG—regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunological Reviews
Immunological Reviews 医学-免疫学
CiteScore
16.20
自引率
1.10%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Immunological Reviews is a specialized journal that focuses on various aspects of immunological research. It encompasses a wide range of topics, such as clinical immunology, experimental immunology, and investigations related to allergy and the immune system. The journal follows a unique approach where each volume is dedicated solely to a specific area of immunological research. However, collectively, these volumes aim to offer an extensive and up-to-date overview of the latest advancements in basic immunology and their practical implications in clinical settings.
期刊最新文献
Issue Information Introduction Lessons Learned From Clinical Trials of Immunotherapeutics for COVID-19. Balanced regulation of ROS production and inflammasome activation in preventing early development of colorectal cancer. Role of inflammasomes and neuroinflammation in epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1