{"title":"针对 5xFAD 阿尔茨海默病小鼠淀粉样蛋白生成的新型神经保护候选药物 TJ1。","authors":"Jia-Le Deng, Lan-Fang Huang, Zhao-Yuan Bian, Xu-Yao Feng, Ruo-Yu Qi, Wei-Xuan Dong, Jin-Ming Gao, Jiang-Jiang Tang","doi":"10.1016/j.intimp.2024.112653","DOIUrl":null,"url":null,"abstract":"<p><p>As one of the main pathmechanisms of Alzheimer's disease (AD), amyloid-β (Aβ) is widely considered to be the prime target for the development of AD therapy. Recently, imidazolylacetophenone oxime ethers or esters (IOEs) have shown neuroprotective effects against neuronal cells damage, suggesting their potential use in the prevention and treatment of AD. Thirty IOEs compounds from our lab in-house library were constructed and screened for the inhibitory effects on Aβ<sub>42</sub>-induced cytotoxicity. Among them, TJ1, as a new IOEs hit, preliminarily showed the effect on inhibiting Aβ<sub>42</sub>-induced cytotoxicity. Furthermore, the inhibitory effects of TJ1 on Aβ<sub>42</sub> aggregation were tested by ThT assays and TEM. The neuroprotective effects of TJ1 were evaluated in Aβ<sub>42</sub>-stimulated SH-SY5Y cells, LPS-stimulated BV-2 cells, and H<sub>2</sub>O<sub>2</sub>- and RSL3-stimulated PC12 cells. The cognitive improvement of TJ1 was assessed in 5xFAD (C57BL/6J) transgenic mouse. These results showed that TJ1 had strong neuroprotective effects and high blood-brain barrier (BBB) permeability without obvious cytotoxicity. TJ1 impeded the self-accumulation process of Aβ<sub>42</sub> by acting on Aβ oligomerization and fibrilization. Besides, TJ1 reversed Aβ-, H<sub>2</sub>O<sub>2</sub>- and RSL3-induced neuronal cell damage and decreased neuroinflammation. In 5xFAD mice, TJ1 improved cognitive impairment, increased GSH level, reduced the level of Aβ<sub>42</sub> and Aβ plaques, and attenuated the glia reactivation and inflammatory response in the brain,. Taken together, our results demonstrate that TJ1 improves cognitive impairments as a new neuroprotective candidate via targeting amyloidogenesis, which suggests the potential of TJ1 as a treatment for AD.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new neuroprotective candidate TJ1 targeting amyloidogenesis in 5xFAD Alzheimer's disease mice.\",\"authors\":\"Jia-Le Deng, Lan-Fang Huang, Zhao-Yuan Bian, Xu-Yao Feng, Ruo-Yu Qi, Wei-Xuan Dong, Jin-Ming Gao, Jiang-Jiang Tang\",\"doi\":\"10.1016/j.intimp.2024.112653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As one of the main pathmechanisms of Alzheimer's disease (AD), amyloid-β (Aβ) is widely considered to be the prime target for the development of AD therapy. Recently, imidazolylacetophenone oxime ethers or esters (IOEs) have shown neuroprotective effects against neuronal cells damage, suggesting their potential use in the prevention and treatment of AD. Thirty IOEs compounds from our lab in-house library were constructed and screened for the inhibitory effects on Aβ<sub>42</sub>-induced cytotoxicity. Among them, TJ1, as a new IOEs hit, preliminarily showed the effect on inhibiting Aβ<sub>42</sub>-induced cytotoxicity. Furthermore, the inhibitory effects of TJ1 on Aβ<sub>42</sub> aggregation were tested by ThT assays and TEM. The neuroprotective effects of TJ1 were evaluated in Aβ<sub>42</sub>-stimulated SH-SY5Y cells, LPS-stimulated BV-2 cells, and H<sub>2</sub>O<sub>2</sub>- and RSL3-stimulated PC12 cells. The cognitive improvement of TJ1 was assessed in 5xFAD (C57BL/6J) transgenic mouse. These results showed that TJ1 had strong neuroprotective effects and high blood-brain barrier (BBB) permeability without obvious cytotoxicity. TJ1 impeded the self-accumulation process of Aβ<sub>42</sub> by acting on Aβ oligomerization and fibrilization. Besides, TJ1 reversed Aβ-, H<sub>2</sub>O<sub>2</sub>- and RSL3-induced neuronal cell damage and decreased neuroinflammation. In 5xFAD mice, TJ1 improved cognitive impairment, increased GSH level, reduced the level of Aβ<sub>42</sub> and Aβ plaques, and attenuated the glia reactivation and inflammatory response in the brain,. Taken together, our results demonstrate that TJ1 improves cognitive impairments as a new neuroprotective candidate via targeting amyloidogenesis, which suggests the potential of TJ1 as a treatment for AD.</p>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.intimp.2024.112653\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.112653","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A new neuroprotective candidate TJ1 targeting amyloidogenesis in 5xFAD Alzheimer's disease mice.
As one of the main pathmechanisms of Alzheimer's disease (AD), amyloid-β (Aβ) is widely considered to be the prime target for the development of AD therapy. Recently, imidazolylacetophenone oxime ethers or esters (IOEs) have shown neuroprotective effects against neuronal cells damage, suggesting their potential use in the prevention and treatment of AD. Thirty IOEs compounds from our lab in-house library were constructed and screened for the inhibitory effects on Aβ42-induced cytotoxicity. Among them, TJ1, as a new IOEs hit, preliminarily showed the effect on inhibiting Aβ42-induced cytotoxicity. Furthermore, the inhibitory effects of TJ1 on Aβ42 aggregation were tested by ThT assays and TEM. The neuroprotective effects of TJ1 were evaluated in Aβ42-stimulated SH-SY5Y cells, LPS-stimulated BV-2 cells, and H2O2- and RSL3-stimulated PC12 cells. The cognitive improvement of TJ1 was assessed in 5xFAD (C57BL/6J) transgenic mouse. These results showed that TJ1 had strong neuroprotective effects and high blood-brain barrier (BBB) permeability without obvious cytotoxicity. TJ1 impeded the self-accumulation process of Aβ42 by acting on Aβ oligomerization and fibrilization. Besides, TJ1 reversed Aβ-, H2O2- and RSL3-induced neuronal cell damage and decreased neuroinflammation. In 5xFAD mice, TJ1 improved cognitive impairment, increased GSH level, reduced the level of Aβ42 and Aβ plaques, and attenuated the glia reactivation and inflammatory response in the brain,. Taken together, our results demonstrate that TJ1 improves cognitive impairments as a new neuroprotective candidate via targeting amyloidogenesis, which suggests the potential of TJ1 as a treatment for AD.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.