{"title":"通过新发现的放射农杆菌 DSM 30147 中的α-葡萄糖苷酶 (ArG),探索具有增强抗炎活性的姜醇苷。","authors":"","doi":"10.1016/j.jbiosc.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Gingerols are phenolic biomedical compounds found in ginger (</span><span><span>Zingiber officinale</span></span>) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an <em>α</em>-glucosidase (glycoside hydrolase) from <span><span>Agrobacterium radiobacter</span></span> DSM 30147 (<em>Ar</em>G) was subcloned, expressed, purified, and then confirmed to have additional <em>α</em>-glycosyltransferase activity. After optimization, the <em>Ar</em>G could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound <strong>1</strong> yielded 63.0 %, compound <strong>2</strong> yielded 26.9 %, and compound <strong>3</strong><span> yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li</span><sup>+</sup> at 40 °C for an 24-h incubation. The structures of purified compound <strong>1</strong> and compound <strong>2</strong> were determined as 6-gingerol-5-<em>O</em>-<em>α</em>-glucoside (<strong>1</strong>) and novel 8-gingerol-5-<em>O</em>-<em>α</em>-glucoside (<strong>2</strong><span><span>), respectively, using nucleic magnetic resonance and mass </span>spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-</span><em>O</em>-<em>α</em>-glucoside had 10-fold higher anti-inflammatory activity (IC<sub>50</sub> value of 15.3 ± 0.5 μM) than 6-gingerol, while the novel 8-gingerol-5-<em>O</em>-<em>α</em>-glucoside retained 42.7 % activity (IC<sub>50</sub> value of 106 ± 4 μM) compared with 8-gingerol. The new <em>α</em>-glucosidase (<em>Ar</em>G) was confirmed to have acidic <em>α</em>-glycosyltransferase activity and could be applied in the production of <em>α</em>-glycosyl derivatives. The 6-gingerol-5-<em>O</em>-<em>α</em>-glucoside can be applied as a clinical drug for anti-inflammatory activity.</p></div>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":"138 3","pages":"Pages 218-224"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring gingerol glucosides with enhanced anti-inflammatory activity through a newly identified α-glucosidase (ArG) from Agrobacterium radiobacter DSM 30147\",\"authors\":\"\",\"doi\":\"10.1016/j.jbiosc.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Gingerols are phenolic biomedical compounds found in ginger (</span><span><span>Zingiber officinale</span></span>) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an <em>α</em>-glucosidase (glycoside hydrolase) from <span><span>Agrobacterium radiobacter</span></span> DSM 30147 (<em>Ar</em>G) was subcloned, expressed, purified, and then confirmed to have additional <em>α</em>-glycosyltransferase activity. After optimization, the <em>Ar</em>G could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound <strong>1</strong> yielded 63.0 %, compound <strong>2</strong> yielded 26.9 %, and compound <strong>3</strong><span> yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li</span><sup>+</sup> at 40 °C for an 24-h incubation. The structures of purified compound <strong>1</strong> and compound <strong>2</strong> were determined as 6-gingerol-5-<em>O</em>-<em>α</em>-glucoside (<strong>1</strong>) and novel 8-gingerol-5-<em>O</em>-<em>α</em>-glucoside (<strong>2</strong><span><span>), respectively, using nucleic magnetic resonance and mass </span>spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-</span><em>O</em>-<em>α</em>-glucoside had 10-fold higher anti-inflammatory activity (IC<sub>50</sub> value of 15.3 ± 0.5 μM) than 6-gingerol, while the novel 8-gingerol-5-<em>O</em>-<em>α</em>-glucoside retained 42.7 % activity (IC<sub>50</sub> value of 106 ± 4 μM) compared with 8-gingerol. The new <em>α</em>-glucosidase (<em>Ar</em>G) was confirmed to have acidic <em>α</em>-glycosyltransferase activity and could be applied in the production of <em>α</em>-glycosyl derivatives. The 6-gingerol-5-<em>O</em>-<em>α</em>-glucoside can be applied as a clinical drug for anti-inflammatory activity.</p></div>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":\"138 3\",\"pages\":\"Pages 218-224\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389172324001671\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389172324001671","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploring gingerol glucosides with enhanced anti-inflammatory activity through a newly identified α-glucosidase (ArG) from Agrobacterium radiobacter DSM 30147
Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 μM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 μM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.